K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

S = 3/1 . 4 + 3/4 . 7 + 3/7 . 10 + ...+ 3/n . ( n + 3 ) 

S = 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ...+ 1/n - 1/n + 3 

S = 1 - 1/n + 3  < 1 

S < 1 ( Đpcm ) 

Tham khảo nha !!! 

13 tháng 3 2018

\(S=\frac{3}{1.4}+\frac{3}{4.7} +\frac{3}{7.10}+...+\frac{3}{n\left(n+3\right)}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

\(S=1-\frac{1}{n+3}=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+2}{n+3}< 1\)

Vậy S < 1

16 tháng 7 2016

S=1/1-1/4+1/4-1/7+.........+1/N-1/N+1

=1/1-(1/4-1/4)+...............+(1/N-1/N)-1/N+1

=1-1/N+1

->S<1

NHA!

16 tháng 7 2016

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n\left(n+3\right)}\)

=>\(S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

=>\(S=1-\frac{1}{n+3}< 1\)

Vậy S<1 (đpcm)

12 tháng 4 2019

Ta có:

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}\)

\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

\(\Leftrightarrow S=1-\frac{1}{n+3}\)

\(\Leftrightarrow S=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+3-1}{n+3}=\frac{n+2}{n+3}\)

\(\Rightarrow\frac{n+2}{n+3}< 1\Rightarrow S< 1\)

9 tháng 1 2015
  • S = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

  • S = \(1-\frac{1}{n+3}\)

\(\Rightarrow\) S < 1 ( đpcm )

 

 

9 tháng 4 2017

=> S = ( 1 -\(\frac{1}{4}\)) + ( \(\frac{1}{4}\)\(\frac{1}{7}\)) +(\(\frac{1}{7}\)\(\frac{1}{10}\)) +.....+ (\(\frac{1}{n}\)\(\frac{1}{n+3}\))

=> S = 1 - \(\frac{1}{4}\)+\(\frac{1}{4}\)\(\frac{1}{7}\)\(\frac{1}{7}\)-  \(\frac{1}{10}\)+......+ \(\frac{1}{n}\)-  \(\frac{1}{n+3}\)

=> S = 1 - \(\frac{1}{n+3}\)

vậy S = 1-  \(\frac{1}{n+3}\)

14 tháng 3 2016

ta có S = 1-1/4 + 1/4 - 1/7 =....................................+1/n - 1/(n+1) = 1- 1/(n+1)

 mà n thuộc N* nên S<1

11 tháng 3 2021

sorry mình cũng đang muốn hỏi bài nay

20 tháng 3 2015

1.

   x+\(\frac{9-5}{5\times9}+\frac{13-9}{9\times13}+.......+\frac{45-41}{41\times45}\)

   x+\(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+......+\frac{1}{41}-\frac{1}{45}\)   

   x+\(\frac{1}{5}-\frac{1}{9}\)

   x+\(\frac{4}{45}=\frac{-37}{45}\)

  x =\(\frac{-41}{45}\)

9 tháng 4 2015

=>S= 1- 1/4 + 1/4 -1/7 + 1/7 - 1/10 +...+ 1/n - 1/(n+3)

=>S= 1- 1/(n+3)

=>S + 1/(n+3) = 1

=>S<1

28 tháng 2 2018

\(S=\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{n\left(n+3\right)}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{n}-\frac{1}{n+3}\)

\(=1-\frac{1}{n+3}\)

Ta có :

\(\frac{1}{n+3}>0\)

\(\Leftrightarrow-\frac{1}{n+3}< 0\)

\(\Leftrightarrow1-\frac{1}{n+3}< 1\)

\(\Leftrightarrow S< 1\left(đpcm\right)\)

28 tháng 2 2018

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}\)

 \(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

\(S=1-\frac{1}{n+3}\)

\(S=\frac{n+2}{n+3}\)

Vi \(n\inℕ^∗\)nên \(n+2< n+3\)

DO đó\(\frac{n+2}{n+3}< 1\)

Vậy S <1

18 tháng 3 2016

Do : \(\frac{3}{1.4}=\frac{1}{1}-\frac{1}{4};\frac{3}{4.7}=\frac{1}{4}-\frac{1}{7}\).... tuong tu ... \(\frac{3}{n\left(n+3\right)}=\frac{1}{n}-\frac{1}{n+3}\)

S= \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n-3}-\frac{1}{n}+\frac{1}{n}-\frac{1}{n+3}\)

S= \(1-\frac{1}{n+3}\)<1

=> S<1 (dpcm)

18 tháng 3 2016

(do : 3/ 1.4 = 1/1 - 1/4;  3/4.7= 1/4 - 1/7 ...

S= 1- 1/4 + 1/4 + 1/4 - 1/7 + ... + 1/ n - 1/ (n+3)

S= 1- 1/ (n+3) <1 

=> S <1 (dpcm)