K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2015

S = 21+22+23+...+2100

S = (2+22+23+24) + (25+26+27+28) +.....+ (297+298+299+2100)

S = 2(1+2+22+23) + 25(1+2+22+23) +.....+ 297(1+2+22+23)

S = 2.15 + 25.15 +.....+ 297.15

S = 15.(2+25+...+297) chia hết cho 15

=> Đpcm

4 tháng 8 2015

a) S=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

S = 6 +\(2^2.\left(2+2^2\right)+....+2^{98}.\left(2+2^2\right)\)chia hết cho 6 

b) Tương tự a 

c) ta có S chia hết cho 2 và chia hết cho 5 ( câu b chia hết cho 15 tức chia hết cho 5 ) nên S chia hết cho 10 hay chữ số tận cùng của S là 0 

Nhớ ticks đúng cho mình nhé

 

 

4 tháng 8 2015

a) S = 2 + 22 + 23 + 24 + .... + 2100

= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 299 + 2100 )

= 6 + ( 22 .2 + 22 . 22 ) + ... + ( 298 . 2 + 298 . 22 )

= 6 + 22 ( 2 + 22 ) + .... + 298 ( 2 + 22 )

= 6 + 22 . 6 + .... + 298 . 6

= 6 . ( 1 + 22 + ... + 298 ) chia hêt cho 3 ( vì 6 chia hết cho 3 )

10 tháng 11 2016

a) S = 5 + 52 + 53 + ... + 5100

=> S = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 599 + 5100 )

=> S = 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 599( 1 + 5 ) 

=> S = 5 . 6 + 53 . 6 + ... + 599 . 6

=> S = ( 5 + 53 + ... + 599 ) . 6 chia hết cho 6

=> S chia hết cho 6

b) S1 = 2 + 22 + 23 + ... + 2100

=> S1 = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )

=> S1 = 2( 1 + 2 + 22 + 23 + 24 ) + ... +296( 1 + 2 + 22 + 23 + 24 )

=> S1 = 2 . 31 + ... + 296 . 31

=> S1 = ( 2 + ... + 296 ) . 31 chia hết cho 31

=> S1 chia hết cho 31

c) S2 = 165 + 215

=> S2 = ( 24 )5 + 215

=> S2 = 220 + 215

=> S2 = 220( 1 + 25 )

=> S2 = 220 . 33 chia hết cho 33

=> S2 chia hết cho 33

15 tháng 10 2018

dài quá 

7 tháng 5 2019

Giải:

A = 2 + 22 + 23 +...+ 2100
<=> A = ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
<=> A = 6+ 22 ( 2+22 )+ ...+ 298 (2+22 )
<=> A = 6+ 22 .6+ ...+ 298 .6
<=> A = 6.(22+...+298 ) chia hết cho 3

Câu b tương tự

2 tháng 8 2019

A- 2 + 22 +2 +............+2100

<=> A= (2 + 22) +(23 + 240 +....+(299+2100)

<=>A=6+22.6+.....+298:6

<=>A=6.(22+.......298) :3

18 tháng 9 2016

a) S= 2 + 22 + 23 +...+ 2100

S= ( 2+2) + ( 23+2) +...+( 299 + 2100 )

S= 6+ 22 ( 2+22)+ ...+ 298 (2+22)

S=6+ 22.6+ ...+ 298.6

S= 6.(22+...+298) chia hết cho 3 ( vì 6 chia hết cho 3)

30 tháng 6 2016

B = (1 + 3) + (32+33)+.....+(389+390)

  = 4 + 32 .(1 + 3) + .....+390.(1+3)

 = 1 .4 + 32.4 + ..... +390.4

= 4.(1 + 32 + .... +390) chia hết cho 4

6 tháng 9 2018

\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)

\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)

\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)

7 tháng 11 2015

\(S=\left(2^0+2^1\right)+\left(2^2+2^3\right)+...+\left(2^{102}+2^{103}\right)=3.2^0+3.2^2+.....+2^{102}.3=3.\left(2^0+2^2+....+2^{102}\right)\)

Vậy S chia hết chp 3 (đpcm)