Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
A = 2 + 22 + 23 +...+ 2100
<=> A = ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
<=> A = 6+ 22 ( 2+22 )+ ...+ 298 (2+22 )
<=> A = 6+ 22 .6+ ...+ 298 .6
<=> A = 6.(22+...+298 ) chia hết cho 3
Câu b tương tự
a) S=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
S = 6 +\(2^2.\left(2+2^2\right)+....+2^{98}.\left(2+2^2\right)\)chia hết cho 6
b) Tương tự a
c) ta có S chia hết cho 2 và chia hết cho 5 ( câu b chia hết cho 15 tức chia hết cho 5 ) nên S chia hết cho 10 hay chữ số tận cùng của S là 0
Nhớ ticks đúng cho mình nhé
a) S = 2 + 22 + 23 + 24 + .... + 2100
= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 299 + 2100 )
= 6 + ( 22 .2 + 22 . 22 ) + ... + ( 298 . 2 + 298 . 22 )
= 6 + 22 ( 2 + 22 ) + .... + 298 ( 2 + 22 )
= 6 + 22 . 6 + .... + 298 . 6
= 6 . ( 1 + 22 + ... + 298 ) chia hêt cho 3 ( vì 6 chia hết cho 3 )
a) S = 5 + 52 + 53 + ... + 5100
=> S = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 599 + 5100 )
=> S = 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 599( 1 + 5 )
=> S = 5 . 6 + 53 . 6 + ... + 599 . 6
=> S = ( 5 + 53 + ... + 599 ) . 6 chia hết cho 6
=> S chia hết cho 6
b) S1 = 2 + 22 + 23 + ... + 2100
=> S1 = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
=> S1 = 2( 1 + 2 + 22 + 23 + 24 ) + ... +296( 1 + 2 + 22 + 23 + 24 )
=> S1 = 2 . 31 + ... + 296 . 31
=> S1 = ( 2 + ... + 296 ) . 31 chia hết cho 31
=> S1 chia hết cho 31
c) S2 = 165 + 215
=> S2 = ( 24 )5 + 215
=> S2 = 220 + 215
=> S2 = 220( 1 + 25 )
=> S2 = 220 . 33 chia hết cho 33
=> S2 chia hết cho 33
S = 21+22+23+...+2100
S = (2+22+23+24) + (25+26+27+28) +.....+ (297+298+299+2100)
S = 2(1+2+22+23) + 25(1+2+22+23) +.....+ 297(1+2+22+23)
S = 2.15 + 25.15 +.....+ 297.15
S = 15.(2+25+...+297) chia hết cho 15
=> Đpcm
S = (21+22)+(23+24)+...+(299+2100)
S = 2.(1+2)+23.(1+2)+...+299.(1+2)
S = 2.3+23.3+...+299.3
S = 3.(2+23+...+299)
=> S chia hết cho 3
S = (21+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
S = 2.(1+2+4+16)+25.(1+2+4+16)+...+297.(1+2+4+16)
S = 2.15+25.15+...+297.15
S = 15.(2+25+...+297)
=> S chia hết cho 15
s= 2+2^2 +2^3 +...+ 2^100
s= (2+2^2 +2^3 +2^4)+...+ (2^97 +2^98 + 2^99 + 2^100)
s= 2. 15 +...+2^97. 15
s= 15(2+...+2^100)chia hết cho 15 => ĐPCM
S=2+22+23+...+2100
Số số hạng của S là:(100-1):1+1=100(số)
Vì 100 chia hết cho 4 nên ta nhóm 4 số hạng vào 1 nhóm
=(2+22+23+24)+...+(297+298+299+2100)
=2(1+2+4+8)+...+297(1+2+4+8)
=2.15+...+297.15
=15(2+...+297)
Vì 15 chia hết cho 15=>15(2+...+297) chia hết cho 15
Hay S chia hết cho 15
Vậy S chia hết cho 15