K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2019

PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)

a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong

b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)

c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\)  quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)

      \(4< m< 6\)

22 tháng 6 2017

pt : x^2 -(2m -3)x +m^2 -3m =0

a) làm tổng luôn --> chỉ việc thay m =1 là xong

b) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9>0\forall m\in R-->dpcm\)

c) \(\left\{{}\begin{matrix}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\\4< m< 6\end{matrix}\right.\) quay lại a)m=1=>\(\left\{{}\begin{matrix}x_1=-2\\x_2=1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x_1=1\\x_2=-2\end{matrix}\right.\)

22 tháng 6 2017

phương trình sai rồi

8 tháng 4 2018

1) \(\Delta\)' = (-m+2)2 -2m+5 = 4-4m+m2-2m+5 = m2-6m+9 = (m-3)2 \(\ge\) 0

=> pt luôn có nghiệm với mọi m

2) ta có : B = x1(1-x2) + x2(1-x1) < 4

<=>B = x1 - x1x2 + x2 - x1x2 < 4

<=> B = (x1 + x2 ) - 2x1x2 < 4

theo định lí vi - ét ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+4\\x_1x_2=\dfrac{c}{a}=2m-5\end{matrix}\right.\)

=> 2m+4 - 2(2m-5) < 4

=> -2m + 14 < 4

=> -2m < -10

=> m > 5

vậy để pt thỏa mãn B = x1(1-x2) + x2(1-x1) < 4 thì m > 5

9 tháng 4 2018

b=-2(m-2) thì ở Vi- ét x1+x2=2(m-2)=2m-4 chứ bạn ei

31 tháng 5 2019

Đen-ta phẩy = -(m-1)2 - (m- m - 1) = m2 - 2m + 1 - m2 + m + 1= 2-m

Để pt có 2 nghiệm pb thì đen-ta phẩy \(\ge\) 0 \(\Leftrightarrow\) 2 - m \(\ge\) 0

\(\Leftrightarrow\) m \(\le\) 2

Theo ht Vi-ét ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x._1x_2=m^2-m-1\end{cases}}\)

Đề cho: P=x12+x22-x1x2+x1+x2 = (x1+x2)2-3x1x2+x1+x2= 4(m2-2m+1)-3(m2-m-1)+2m-2

= 4m2-8m+4-3m2+3m+3+2m-2= m2-3m+5= m2-2m.\(\frac{3}{2}\)\((\frac{3}{2})^2\)-\((\frac{3}{2})^2\) +5

= (m-3/2)2 + 29/4 \(\ge\)29/4. Vậy GTNN của P là 29/4

Dấu "=" xảy ra \(\Leftrightarrow\)m-3/2=0 \(\Leftrightarrow\)m=3/2(TMĐK m \(\le2\))

Vậy m = 3/2 thì biểu thức P đạt GTNN là 29/4

31 tháng 5 2019

MÌNH GIẢI SAI CHỔ NÀO BẠN THÔNG CẢM NHA! ^.^ !!

6 tháng 2 2019

a, Vì 1 < x1 < x2 < 6 nên pt đã cho có 2 nghiệm dương phân biệt

Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)

                              \(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\m< 0\left(h\right)m>3\end{cases}}\)

                               \(\Leftrightarrow m>3\)

Có \(\Delta=9>0\)

Nên pt có 2 nghiệm phân biệt \(x_1=\frac{2m-3-3}{2}=m-3\)

                                                \(x_2=\frac{2m-3+3}{2}=m\)                        (Do m - 3 < m nên x1  < x2 thỏa mãn đề bài)

Vì \(1< x_1< x_2< 6\)

\(\Rightarrow\hept{\begin{cases}m-3>1\\m< 6\end{cases}}\)

\(\Leftrightarrow4< m< 6\)(Thỏa mãn)

c, C1_) Có \(x_1^2+x_2^2=\left(m-3\right)^2+m^2\)

                        \(=m^2-6m+9+m^2\)

                         \(=2m^2-6m+9\)

                         \(=2\left(m^2-3m+\frac{9}{4}\right)+\frac{9}{2}\)

                        \(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow m=\frac{3}{2}\)

C2_) Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)

Có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

                     \(=\left(2m-3\right)^2-2m^2+6m\)

                     \(=4m^2-12m+9-2m^2+6m\)

                     \(=2m^2-6m+9\)

                       \(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)

Dấu "=" khi \(m=\frac{3}{2}\)

27 tháng 2 2019

a) \(\Delta'=1^2-m^2+3m=-\left(m^2-3m-1\right)\)

PT có 2 nghiệm PB \(\Leftrightarrow-\left(m^2-3m-1\right)>0\)

\(m^2-3m-1< 0\Leftrightarrow\left(m-\dfrac{3}{2}\right)^2>\dfrac{15}{4}\)

\(m-\dfrac{3}{2}>\dfrac{\sqrt{15}}{2}\Rightarrow m>\dfrac{\sqrt{15}+3}{2}\)

b) Vi-ét

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4-2m^2+6m\)

\(\Rightarrow-2m^2+6m+4=8\)

Tính m ra

c) \(x^2_1+x^2_2=-2m^2+6m+4\)

\(=-2\left(m^2-3m-2\right)\)

\(=-2\left(m-\dfrac{3}{2}\right)^2-\dfrac{17}{4}\)

Lập luận để tìm ra GTNN

30 tháng 6 2015

a) ta giải hpt:

\(-\int^{\left(x1+x2\right)+x1x2=0}_{\left(x1+x2\right)-x1x2=3m+4}\Leftrightarrow\int^{2x1x2=-3m-4}_{\left(x1+x2\right)+x1x2=0}\Leftrightarrow\int^{x1.x2=\frac{-3}{2}m-2}_{x1+x2=\frac{3}{2}m+2}\)

=> pt cần tìm: \(x^2-\left(\frac{3}{2}m+2\right)x+\left(-\frac{3}{2}m-2\right)=0\)

b) pt có 2 nghiệm pb trái dấu <=> tích ac<0 <=> \(-\frac{3}{2}m-2<0\Leftrightarrow\frac{3}{2}m>-2\Leftrightarrow m>-\frac{4}{3}\)