K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2021

a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`

`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.

b) Viet: `x_1+x_2=-2m+4`

`x_1x_2=m^2-4m`

`3/(x_1) + x_2=3/(x_2)+x_1`

`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`

`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`

`<=>(x_1-x_2).(3+x_1x_2)=0`

`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`

`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`

`<=>  4.(3+m^2-4m)=0`

`<=> m^2-4m+3=0`

`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)

Vậy `m \in {1;3}`.

23 tháng 4 2021

Sửa lại 1 nghiệm thành 2 nghiệm nha

NV
23 tháng 4 2021

Đề là \(x_1+3x_2=5\) phải không nhỉ?

Viết lại đề : \(x^2-2mx+m^2-1=0\left(a=1;b=-2m;c=m^2-1\right)\)( 1 )

a, Thay m = 1 vào pt (1) ta đc 

\(x^2-2.1x+1^2-1=0\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)

Tương ứng vs : \(\left(2m\right)^2-4\left(m^2-1\right)=4m^2-4m^2+4=4>0\)(EZ>33) 

c, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=2m;x_1x_2=m^2-1\)

Theo bài ra ta có : \(x_1+x_2=12\)Thay vào ta đc 

\(\Leftrightarrow2m=12\Leftrightarrow m=6\)

14 tháng 3 2022

\(\Delta'=16-m\)Để pt có 2 nghiệm pb x1 ; x2 khi 

\(\Delta'>0\Leftrightarrow16-m>0\Leftrightarrow m< 16\)

Theo Vi et \(\hept{\begin{cases}x_1+x_2=8\left(1\right)\\x_1x_2=m\left(2\right)\end{cases}}\)

Ta có \(x_1-x_2=2\left(3\right)\)

Từ (1) ; (3) ta có hệ \(\hept{\begin{cases}x_1+x_2=8\\x_1-x_2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x_1=10\\x_2=x_1-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=5\\x_2=3\end{cases}}\)

Thay vào (2) ta được \(m=5.3=15\)