Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=2 thì pt sẽ là \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-2m\right)\)
\(=4m^2-8m+4-4m^2+8m=4>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: \(x_1+x_2=x_1\cdot x_2\)
\(\Leftrightarrow m^2-2m=2\left(m-1\right)=2m-2\)
\(\Leftrightarrow m^2-4m+2=0\)
\(\Leftrightarrow\left(m-2\right)^2=2\)
hay \(m\in\left\{\sqrt{2}+2;-\sqrt{2}+2\right\}\)
123 + 345 = 468
468 + 567 = 1035
1035 - 236 = 799
799 - 189 = 610
610 + 853 = 1463
Để PT có 2 nghiệm phân biệt thì:
\(\Delta=\left(2m+1\right)^2-4\left(m+1\right)\left(m-1\right)>0\\ \Leftrightarrow4m^2+4m+1-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+4m+1-4m^2+4>0\\ \Leftrightarrow4m+5>0\Leftrightarrow m>\dfrac{-5}{4}\)
Mà theo Viète, ta có:
\(x_1+x_2=-\dfrac{b}{a}=\dfrac{2m+1}{m+1}\)
\(x_1x_2=\dfrac{c}{a}=\dfrac{m-1}{m+1}\)
Do đó:
\(x^2_1+x_2^2-2010x_1x_2=2013\\ \Leftrightarrow x_1^2+2x_1x_2+x^2_2-2012x_1x_2=2013\\ \Leftrightarrow\left(x_1+x_2\right)^2-2012x_1x_2=2013\\ \Leftrightarrow\dfrac{\left(2m+1\right)^2}{\left(m+1\right)^2}-2012\dfrac{m-1}{m+1}=2013\\ \Leftrightarrow\dfrac{\left(2m+1\right)^2-2012\left(m-1\right)\left(m+1\right)}{\left(m+1\right)^2}=2013\\ \Leftrightarrow4m^2+4m+1-2012\left(m^2-1\right)=2013\left(m^2+2m+1\right)\\ \Leftrightarrow4m^2+4m+1-2012m^2+2012=2013m^2+4026m+2013\\ \Leftrightarrow4021m^2+4022m=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-\dfrac{4022}{4021}\end{matrix}\right.\left(t/m\right)\)
Vậy với m như trên thì PT có 2 nghiệm thoả mãn đề bài.
Chúc bạn học tốt nha.
1) \(\Delta\)' = \(m^2-m+6\) = \(\left(m-\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}>0\forall m\)
\(\Rightarrow\) pt có 2 nghiệm phân biệt \(\forall m\)
ta có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=15\)
áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-6\end{matrix}\right.\)
thay ta có : \(4m^2-2m+12=15\) \(\Leftrightarrow\) \(4m^2-2m-3=0\)
giải phương trình ta có : \(\left\{{}\begin{matrix}m=\dfrac{1+\sqrt{13}}{4}\\m=\dfrac{1-\sqrt{13}}{4}\end{matrix}\right.\)
vậy : \(m=\dfrac{1+\sqrt{13}}{4};m=\dfrac{1-\sqrt{13}}{4}\) là thỏa mãng đk bài toán
2) ta có : \(\left|x_1-x_2\right|=\sqrt{20}\) \(\Leftrightarrow\) \(\left(x_1-x_2\right)^2=20\) \(\Leftrightarrow\) \(\left(x_1+x_2\right)^2-4x_1x_2=20\)
áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-6\end{matrix}\right.\)
thay vào ta có : \(4m^2-4m+24=20\) \(\Leftrightarrow\) \(4m^2-4m+4=0\) (vô nghiệm)
\(\Rightarrow\) không có \(x\) thỏa mãng
Không tồn tại giá trị nào của $m$ thỏa mãn, vì $x_1^2+x_2^2+2019\geq 2019>0$ với mọi $m\in\mathbb{R}$