Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\Delta\)' = \(m^2-m+6\) = \(\left(m-\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}>0\forall m\)
\(\Rightarrow\) pt có 2 nghiệm phân biệt \(\forall m\)
ta có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=15\)
áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-6\end{matrix}\right.\)
thay ta có : \(4m^2-2m+12=15\) \(\Leftrightarrow\) \(4m^2-2m-3=0\)
giải phương trình ta có : \(\left\{{}\begin{matrix}m=\dfrac{1+\sqrt{13}}{4}\\m=\dfrac{1-\sqrt{13}}{4}\end{matrix}\right.\)
vậy : \(m=\dfrac{1+\sqrt{13}}{4};m=\dfrac{1-\sqrt{13}}{4}\) là thỏa mãng đk bài toán
2) ta có : \(\left|x_1-x_2\right|=\sqrt{20}\) \(\Leftrightarrow\) \(\left(x_1-x_2\right)^2=20\) \(\Leftrightarrow\) \(\left(x_1+x_2\right)^2-4x_1x_2=20\)
áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-6\end{matrix}\right.\)
thay vào ta có : \(4m^2-4m+24=20\) \(\Leftrightarrow\) \(4m^2-4m+4=0\) (vô nghiệm)
\(\Rightarrow\) không có \(x\) thỏa mãng
a) pt có 2 nghiệm dương <=> \(\Delta\ge0;\int^{x1+x2>0}_{x1.x2>0}\Leftrightarrow4\left(m+1\right)^2-4\left(m-4\right)\ge0;\int^{2m+2>0}_{m-4>0}\Leftrightarrow4m^2+4m+4+16\ge0;\int^{m>-1}_{m>4}\)
=> m>4. (cái kí hiệu ngoặc kia là kí hiệu và nha. tại trên này không có nên dùng tạm cái ý)
b) áp dụng hệ thức vi ét ta có: x1+x2=2m+2; x1.x2=m-4
\(M=\frac{\left(x1+x2\right)^2-2x1x2}{x1-x1.x2+x2-x1.x2}=\frac{\left(2m+2\right)^2-2\left(m-4\right)}{2m+2-2\left(m-4\right)}=\frac{4m^2+6m+12}{10}=\frac{\left(4m^2+6m+\frac{9}{4}\right)+\frac{39}{4}}{10}=\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\)
ta có: \(\left(2m+\frac{3}{2}\right)^2\ge0\Leftrightarrow\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\Leftrightarrow\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\ge\frac{39}{40}\)=> Min M=39/40 <=>m=-3/4
Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=-\frac{5}{3}\\x_1x_2=-2\end{cases}}\)
Ta có \(S=y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}\)
\(=-\frac{5}{3}+\frac{\frac{-5}{3}}{-2}=-\frac{5}{6}\)
\(P=x_1x_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)=x_1x_2+1+1+\frac{1}{x_1x_2}=-2+2+\frac{1}{-2}=-\frac{1}{2}\)
Khi đó y1 ; y2 là nghiệm của pt
\(Y^2-SY+P=0\)
\(\Leftrightarrow Y^2+\frac{5}{6}Y-\frac{1}{2}=0\)
a, \(3x^2+5x-6=0\) ( a=3 , b=5 , c=-6)
Ta xét ac=\(3\cdot\left(-6\right)=-18< 0\)
=>pt luôn có 2 nghiệm phân biệt
b , Vì phương trình trên có 2 nghiệm phân biệt
Ta áp dụng viet vào phương trình
\(\left\{{}\begin{matrix}x_1x_2=\frac{-6}{3}=-2\\x_1+x_2=-\frac{5}{3}\end{matrix}\right.\)
Ta có : \(\left(x_1-1\right)\left(x_2-1\right)+x_1^2+x_2^2\)
=\(x_1x_2-x_1-x_2+1+x_1^2+x_2^2\)
=\(\left(x_1^2+x_2^2+2x_1x_2\right)-x_1x_2-\left(x_1+x_2\right)\)
=\(\left(x_1+x_2\right)^2-\left(x_1+x_2\right)-x_1x_2\)
=\(\left(\frac{-5}{3}\right)^2-\left(-\frac{5}{3}\right)-\left(-2\right)\)
=\(\frac{25}{9}+\frac{5}{3}+2=\frac{58}{9}\)
bạn có chép đúng đề ko ạ, tại mình thấy căn đen ta lẻ quá
Dùng định lí Viète vào pt cho ta:
\(\left\{{}\begin{matrix}S=x_1+x_2=2\\P=x_1x_2=\dfrac{1}{3}\end{matrix}\right.\)
a) \(A=\left(x_1-1\right)\left(x_2-1\right)=x_1x_2-\left(x_1+x_2\right)+1=-\dfrac{2}{3}\)
b)\(B=x_1\left(x_2-1\right)+x_2\left(x_1-1\right)=2x_1x_2-\left(x_1+x_2\right)=-\dfrac{4}{3}\)
c)\(C=\sqrt{x_1}+\sqrt{x_2}=\sqrt{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=\sqrt{2+2\sqrt{\dfrac{1}{3}}}\)
Tới đó hết giải được tiếp :)
d)\(D=x_1\sqrt{x_2}+x_2\sqrt{x_1}=\sqrt{x_1x_2}.\left(\sqrt{x_1}+\sqrt{x_2}\right)\) rồi thế kết quả câu C và biểu thức từ trên.