K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-3m\right)\)

\(=4m^2-8m+4-4m^2+12m=4m+4\)

Để phương trình có nghiệm thì 4m+4>=0

hay m>=-1

NV
9 tháng 11 2019

Đặt \(x^2=t\ge0\Rightarrow\left(m-1\right)t^2+2t-3=0\) (1)

Với \(m=1\Rightarrow t=\frac{3}{2}\)

Với \(m\ne1\Rightarrow\Delta'=1+3\left(m-1\right)=3m-2\)

a/ \(m=1\) ko thỏa mãn

Để pt vô nghiệm \(\Rightarrow\Delta'< 0\Rightarrow m< \frac{2}{3}\) hoặc (1) có 2 nghiệm đều âm

\(\Rightarrow\left\{{}\begin{matrix}t_1+t_2=\frac{2}{1-m}< 0\\t_1t_2=\frac{3}{1-m}>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

Vậy \(m< \frac{2}{3}\)

b/ Để pt có đúng 1 nghiệm \(\Leftrightarrow\left(1\right)\) có đúng 1 nghiệm \(t=0\Rightarrow-3=0\) (vô lý)

Vậy ko tồn tại m thỏa mãn

c/ Để pt có 2 nghiệm pb \(\Rightarrow\left(1\right)\) có đúng 1 nghiệm dương

\(m=1\) thỏa mãn

Với \(m\ne1\):

TH1: \(\Delta'=0\Rightarrow m=\frac{2}{3}\Rightarrow t=\frac{1}{1-m}=3>0\) thỏa mãn

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\t_1t_2< 0\end{matrix}\right.\) \(\Rightarrow\frac{3}{1-m}< 0\Rightarrow1-m< 0\Rightarrow m>1\)

Vậy: \(\left\{{}\begin{matrix}m=\frac{2}{3}\\m\ge1\end{matrix}\right.\)

NV
9 tháng 11 2019

d/ Để pt đã cho có 3 nghiệm pb \(\Leftrightarrow\left(1\right)\) có 1 nghiệm bằng 0 và 1 nghiệm dương

\(\Rightarrow-3=0\) (vô lý)

Không tồn tại m thỏa mãn

e/ Để pt có 4 nghiệm pb \(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}3m-2>0\\t_1+t_2>0\\t_1t_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>\frac{2}{3}\\\frac{2}{1-m}>0\\\frac{3}{1-m}>0\end{matrix}\right.\)

\(\Rightarrow\frac{2}{3}< m< 1\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bài 2. 

ĐK: $x\geq \frac{-11}{2}$

$x+\sqrt{2x+11}=0\Leftrightarrow x=-\sqrt{2x+11}$

\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=2x+11\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ x^2-2x-11=0(*)\end{matrix}\right.\)

\(\Delta'(*)=12\)

\(\Rightarrow x=1\pm \sqrt{12}=1\pm 2\sqrt{3}\). Với điều kiện của $x$ suy ra $x=1-2\sqrt{3}$

$\Rightarrow a=1; b=-2\Rightarrow ab=-2$

 

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bài 1. 

Đặt $x^2+2x=t$ thì PT ban đầu trở thành:

$t^2-t-m=0(1)$

Để PT ban đầu có 4 nghiệm phân biệt thì:

Trước tiên PT(1) cần có 2 nghiệm phân biệt. Điều này xảy ra khi $\Delta (1)=1+4m>0\Leftrightarrow m> \frac{-1}{4}(*)$

Với mỗi nghiệm $t$ tìm được, thì PT $x^2+2x-t=0(2)$ cần có 2 nghiệm $x$ phân biệt. 

Điều này xảy ra khi $\Delta '(2)=1+t>0\Leftrightarrow t>-1$

Vậy ta cần tìm điều kiện của $m$ để (1) có hai nghiệm $t$ phân biệt đều lớn hơn $-1$

Điều này xảy ra khi \(\left\{\begin{matrix} (t_1+1)(t_2+1)>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1t_2+t_1+t_2+1>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -m+1+1>0\\ 1+2>0\end{matrix}\right.\Leftrightarrow m< 2(**)\)

Từ $(*); (**)\Rightarrow \frac{-1}{4}< m< 2$

b) 

Để pt ban đầu vô nghiệm thì PT(1) vô nghiệm hoặc có 2 nghiệm $t$ đều nhỏ hơn $-1$

PT(1) vô nghiệm khi mà $\Delta (1)=4m+1<0\Leftrightarrow m< \frac{-1}{4}$

Nếu PT(1) có nghiệm thì $t_1+t_2=1>-2$ nên 2 nghiệm $t$ không thể cùng nhỏ hơn $-1$

Vậy PT ban đầu vô nghiệm thì $m< \frac{-1}{4}$

c) Để PT ban đầu có nghiệm duy nhất thì:

\(\left\{\begin{matrix} \Delta (1)=1+4m=0\\ \Delta' (2)=1+t=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=-\frac{1}{4}\\ t=-1\end{matrix}\right.\).Mà với $m=-\frac{1}{4}$ thì $t=\frac{1}{2}$ nên hệ trên vô lý. Tức là không tồn tại $m$ để PT ban đầu có nghiệm duy nhất. 

d) 

Ngược lại phần b, $m\geq \frac{-1}{4}$

e) 

Để PT ban đầu có nghiệm kép thì PT $(2)$ có nghiệm kép. Điều này xảy ra khi $\Delta' (2)=1+t=0\Leftrightarrow t=-1$

$t=-1\Leftrightarrow m=(-1)^2-(-1)=2$

 

 

Bài 1: 

\(\Leftrightarrow x\left(m^2-m-2\right)=m^2-1\)

\(\Leftrightarrow x\left(m-2\right)\left(m+1\right)=\left(m-1\right)\left(m+1\right)\)

Để phương trình vô nghiệm thì m-2=0

hay m=2

Để phương trình có nghiệm duy nhất thì (m-2)(m+1)<>0

hay \(m\notin\left\{2;-1\right\}\)

Để phương trình có vô số nghiệm thì m+1=0

hay m=-1

29 tháng 7 2016

a) \(x+\sqrt{3x^2+1}=m\)

<=> \(\sqrt{3x^2+1}=m-x\)

ta thẩ : \(\sqrt{3x^2+1}\ge0\)=> \(m-x\ge0\)

<=> \(m\ge x\)

14 tháng 8 2019

trào lưu tag à Nguyễn Thị Bình Yên

14 tháng 8 2019

Trần Thanh PhươngNguyễn Văn Đạt?Amanda?svtkvtmVũ Minh Tuấn! # %HISINOMA KINIMADONguyễn Kim HưngMr.VôDanhMr.VôDanhtthlê thị hương giangbuithianhthoLê Thanh NhànLê ThảoNguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh HằngRibi Nkok NgokMysterious Personsoyeon_Tiểubàng giảiVõ Đông Anh TuấnPhương AnTrần Việt Linh

20 tháng 11 2022

1: TH1: m=0

=>-x-2=0

=>x=-2(loại)

TH2: m<>0

\(\text{Δ}=\left(2m-1\right)^2-4m\left(m-2\right)\)

=4m^2-4m+1-4m^2+8m

=4m+1

Đểphương trình có 2 nghiệm pb thì 4m+1>0

=>m>-1/4

2: TH1: m=1

Pt sẽ là -2x-1=0

=>x=-1/2(nhận)

TH2: m<>1

\(\text{Δ}=\left(-2m\right)^2-4\left(m-1\right)\left(m-2\right)\)

=4m^2-4(m^2-3m+2)

=-4(-3m+2)

=12m-8

Để phương trình có 1 nghiệm thì 12m-8=0

=>m=2/3