K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

Ta sẽ chứng minh  : 11n+1 + 122n-1 (1) với mọi n \(\inℕ^∗\)bằng phương pháp quy nạp 

Với n = 1 , ta có : 11n+1 + 122n-1 = 112 + 12 = 133 

=> (1) đúng khi n = 1 

Giả sử đã có (1) đúng khi n = k , k \(\inℕ^∗\), ta sẽ Chứng minh nó cũng đúng khi n = k + 1 

Ta có : 

11(k+1) + 1 + 122(k+1) - 1 = 11.(11k+1 + 122k-1) + 122k-1.(122 - 11) 

                                  = 11 . (11k+1 + 122k-1) + 133 . 122k -1 (2) 

Mà 11k+1 + 122k-1 \(⋮\)133 nên từ (2) ta suy ra được : 11(k+1)+1 + 122(k+1) - 1 \(⋮\)133 

Hay (1) đúng với n = k + 1 

Từ các chứng minh trên => (1) đúng với mọi n \(\inℕ^∗\)

25 tháng 6 2018

\(11^{n+1}+12^{2n-1}=11^n\cdot11+12\cdot12^{2n-2}=11^n\cdot11+12\cdot144^{n-1}\)

\(11^n\cdot11+\left(133-121\right)\cdot144^{n-1}=133\cdot144^{n-1}-121\cdot144^{n-1}+11^n\cdot11\)

\(=133\cdot144^{n-1}-144^{n-1}\cdot121+11^{n-1}\cdot121\)

\(=133\cdot144^{n-1}-121\left(144^{n-1}-11^{n-1}\right)\)

\(=133\cdot144^{n-1}-121\left(144-11\right)\left(144^{n-2}+144^{n-3}\cdot11+144^{n-4}\cdot11^2+...+11^{n-2}\right)\)

\(=133\cdot144^{n-1}-121\cdot133\left(144^{n-2}+144^{n-3}\cdot11+144^{n-4}\cdot11^2+...+11^{n-2}\right)\)

\(=133\left(144^{n-1}-121\left(144^{n-2}+144^{n-3}\cdot11+144^{n-4}\cdot11^2+...+11^{n-2}\right)\right)⋮133\)

\(\Rightarrow11^{n+1}+12^{2n-1}⋮133\)(đpcm)

26 tháng 1 2016

troi lanh em khong cha loi duoc

25 tháng 2 2017

ĐỀ SAI NHÉ,PHẢI LÀ (M,N)=1 THÔI

Dễ dàng CM được tính chất sau: 1 số chính phương chia hết cho số nguyên tố p thì chia hết cho \(p^2\)

Quay lại với  bài này: 

Đặt: \(\hept{\begin{cases}m=p_1.p_2...p_i\\n=q_1.q_2...q_j\end{cases}},p_k,q_l\)là các số nguyên tố và do (m,n)=1 => \(p_k\)bất kỳ khác \(q_l\)

Áp dụng trực tiếp tính chất trên ta => m,n là số chính phương

8 tháng 5 2018

bn hay thật 

8 tháng 5 2018

Đây toán 6 nha bạn

với n =2   =>  \(n^2+4=8 loại\)

với n =3   => \(n^2+16= 24 loại\)

với n =4  =>  \(n^2+4=20 loại\)

vói n =5  =>  ( các bn tự thử) THõa mãn

Với n>5 => n có dạng 5k+1,5k+2,5k+3,5K+4

Sau đó tự thử nha