Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay m = -1/2 vào pt trên ta đc
\(-\frac{1}{2}\left(x^2-4x+3\right)+2\left(x-1\right)\)
\(=-\frac{\left(x-3\right)\left(x-1\right)}{2}+2x-2\)
a) Với m=\(\frac{-1}{2}\)ta có:
\(\frac{-1}{2}\left(x^2-4x+3\right)+2\left(x-1\right)=0\)
<=> \(x^2-8x+7=0\)
Vì a+b+c=1+(-8)+7=0
Nên pt có nghiệm \(x_1=1;x_2=7\)
b) +) nếu m=0, pt có dạng 2(x-1)=0 <=> x=1
+) nếu m\(\ne\)0, pt có dạng mx2+2(1-2m)x+3m-2=0
\(\Delta'=\left(1-2m\right)^2-k\left(3m-2\right)=1-4m-3m^2+2m\)
\(=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\)
Vậy pt có nghiệm với mọi m
+Ta có: \(\Delta=\left(m+1\right)^2-4.\left(2m-3\right)\)
\(=m^2+2m+1-8m+12\)
\(=m^2-6m+12\)
\(=\left(m-3\right)^2+3>0\)
=>dpcm
+Thay x=3 vào phương trình x2 – (m + 1)x + 2m - 3 = 0
ta được: 32-(m+1).3+2m-3=0
<=>9-3m-3+2m-3=0
<=>-m+3=0
<=>m=3
Vậy m=3 thì phương trình x2 – (m + 1)x + 2m - 3 = 0 có 1 nghiệm bằng 3
\(x^2-\left(m+1\right)x+2m-3=0\)
+ Xét \(\Delta=\left(m+1\right)^2-4\left(2m-3\right)=m^2-6m+13=\left(m^2-6m+9\right)+4=\left(m-3\right)^2+4>0\)với mọi m thuộc tập số thực.
Vậy phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m.
+ Phương trình có nghiệm \(x=3\) , thay vào phương trình , ta được :
\(3^2-\left(m+1\right).3+2m-3=0\Rightarrow m=3\)
Vậy m = 3
+\(\Delta=\left[-\left(m+1\right)\right]^2-4.1.\left(2m-3\right)\)
\(=m^2+2m+1-8m+12=m^2-6m+13=\left(m-3\right)^2+4>0\)
\(\Delta>0\Rightarrow\text{phương trình (1) có 2 nghiệm phân biệt}\)
+x=3
PT(1) trở thành : \(3^2-\left(m+1\right).3+2m-3=0\)
\(\Leftrightarrow-3m-3+2m+6=0\)
\(\Leftrightarrow-m+3=0\Leftrightarrow m=3\text{ Vậy với x=3 thì m=3}\)
Xin lựa a;b ... c;d e rỗng tuếch :>> (ko bt đúng ko nữa).
a, Thay m = 5 vào biểu thức ta đc
\(x^2-2\left(5+6\right)x+5-4=0\)
\(x^2-33x+1=0\)
\(\Delta=\left(-33\right)^2-4.1.1=1089-4=1085>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{33-\sqrt{1085}}{2};x_2=\frac{33+\sqrt{1085}}{2}\)
b, Ta có :
\(\Delta=\left(2m-2\right)^2-4\left(m-4\right)=4m^2-4-4m+16=4m^2-4m+12\)
\(=\left(4m^2-4m+1\right)+11\ge11\forall m\)
Vậy phuwong trình có 2 nghiệm phân biệt vs mọi x
b, \(\Delta=\left(m+1\right)^2+8\left(m+3\right)=m^2+2m+1+8m+24\)
\(=m^2+10m+25=\left(m+5\right)^2\ge0\forall m\)
Vậy pt luôn có 2 nghiệm
a) Thay x = 2 vào phương trình ta có
\(2^2-\left(m+1\right)2-2\left(m+3\right)=0\Leftrightarrow m=2\)
Vậy để phương trình có nghiệm là x = 2 thì m = 2