K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\text{Δ}=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

để phương trình có hai nghiệm phân biệt thì m-2<>0

hay m<>2

Theo đề, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1-x_2=5\\x_1x_2=m-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x_1=m+5\\x_2=x_1-5\\x_1x_2=m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+5}{2}\\x_2=\dfrac{m+5}{2}-5=\dfrac{m-5}{2}\\x_1x_2=m-1\end{matrix}\right.\)

\(\Leftrightarrow m^2-25=4m-4\)

\(\Leftrightarrow m^2-4m-21=0\)

=>(m-7)(m+3)=0

=>m=7 hoặc m=-3

 

 

 

6 tháng 6 2023

\(\Delta=\left(-m\right)^2-2.1.\left(m-1\right)\\ =m^2-2m+1\\ =\left(m-1\right)^2\)

Phương trình có hai nghiệm phân biệt :

\(\Leftrightarrow\Delta>0\\ \Rightarrow\left(m-1\right)^2>0\\ \Rightarrow m\ne1\)

Theo vi ét : 

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(x^2_1+x^2_2=x_1+x_2\\ \Leftrightarrow x^2_1+x^2_2=m\\ \Leftrightarrow\left(x^2_1+2x_1x_2+x_2^2\right)-2x_1x_2=m\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-m=0\\ \Leftrightarrow m^2-2\left(m-1\right)-m=0\\ \Leftrightarrow m^2-2m+2-m=0\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=2\left(t/m\right)\end{matrix}\right.\)

Vậy \(m=2\)

27 tháng 4 2019

Làm câu b)

Để phương trình có hai nghiệm phân biệt:

\(\Delta'\ge0\Leftrightarrow3^2-\left(m+1\right)\ge0\Leftrightarrow m\le8\)

Áp dụng định lí Vi-ét ta có:

\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=m+1\end{cases}}\)(1)

Xét: \(x^2_1+x^2_2=3\left(x_1+x_2\right)\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\left(x_1+x_2\right)\)(2)

Từ 1, 2 ta có:

\(6^2-2\left(m+1\right)=3.6\Leftrightarrow m=8\)(tm)

Vậy ...

30 tháng 4 2020

Phương trình có hai nghiệm fan biệt <=> \(\Delta>0\)

<=> \(\left(m-1\right)^2+4m>0\Leftrightarrow\left(m+1\right)^2>0\)

<=> \(m\ne-1\)

Áp dụng viet ta có: \(x_1x_2=-m;x_1+x_2=m-1\)

Khi đó; 

\(x_1\left(3-x_2\right)+20\ge3\left(3-x_2\right)\)

<=> \(3\left(x_1+x_2\right)-x_1x_2+11\ge0\)

=>\(3\left(m-1\right)+m+11\ge0\)

<=> \(m\ge-2\) 

30 tháng 4 2020

Ta có: \(\Delta=\left(m-1\right)^2+4m=\left(m+1\right)^2\)

Phương trình có 2 nghiệm phân biệt x1;x2 khi \(\Delta\)>0 <=> m\(\ne\)-1

Ta có: \(\hept{\begin{cases}x_1+x_2=m+1\\x_1\cdot x_2=-m\end{cases}}\)

Theo bài ra ta có:

\(x_1\left(3-x_2\right)+20\ge3\left(3-x_2\right)-x_1x_2\ge-11\)

\(\Leftrightarrow3\left(m-1\right)+m\ge-11\)

<=> \(4m\ge-8\Leftrightarrow m\ge-2\)

Vậy \(m\ge-2;m>-1\)thì phương trình có 2 nghiệm phân biệt thỏa mãn yêu cầu đề bài

3 tháng 5 2022

Để  phương trình 1 có 2 nghiệm phân biệt

=> \(\Delta,>0\)  <=> \(\left[-\left(m-1\right)\right]^2-\left(-2m+5\right)>0\)

<=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

=> Theo hệ thức Vi ét ta có 

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\circledast\\x_1.x_2=-2m+5\circledast\circledast\end{matrix}\right.\)   

Theo bài ra ta có 

\(x_1-x_2=-2\circledcirc\)

Từ \(\circledast vaf\circledcirc\) ta có hệ pt 

\(\left\{{}\begin{matrix}x1+x2=2m-2\\x1-x2=-2\end{matrix}\right.\)  <=>\(\left\{{}\begin{matrix}x1=m-2\\x2=m\end{matrix}\right.\)

Thay x1 và x2 vào \(\circledast\circledast\)ta dc

\(\left(m-2\right)m=-2m+5\)

<=> m=\(\left[{}\begin{matrix}-\sqrt{5}\\\sqrt{5}\end{matrix}\right.\left(tm\right)\)

Vậy ...

 

a: Khi m=1 thì (1): x^2-2(1-2)x+1^2-5-4=0

=>x^2+2x-8=0

=>(x+4)(x-2)=0

=>x=2 hoặc x=-4

b: Δ=(2m-4)^2-4(m^2-5m-4)

=4m^2-16m+16-4m^2+20m+16

=4m+32

Để pt có hai nghiệm phân biệt thì 4m+32>0

=>m>-8

x1^2+x2^2=-3x1x2-4

=>(x1+x2)^2+x1x2+4=0

=>(2m-4)^2+m^2-5m-4+4=0

=>4m^2-16m+16+m^2-5m=0

=>5m^2-21m+16=0

=>(m-1)(5m-16)=0

=>m=16/5 hoặc m=1

28 tháng 1 2022

1, Với x >=  0 ; x khác 1 

\(P=\dfrac{\sqrt{x}\left(x-1\right)+2\sqrt{x}\left(\sqrt{x}-1\right)-\left(3x+1\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}+2x-3\sqrt{x}-3x\sqrt{x}-3x-\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-2x\sqrt{x}-x-4\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

 

28 tháng 1 2022

mình sửa đề câu 2 nhé 

a, \(x^2+mx-1=0\)

\(\Delta=m^2-4\left(-1\right)=m^2+4>0\)

Vậy pt luôn có 2 nghiệm pb 

b, Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)

Ta có : \(\left(x_1+x_2\right)^2-2x_1x_2=7\)

Thay vào ta được : \(m^2+2=7\Leftrightarrow m^2=5\Leftrightarrow m=\pm\sqrt{5}\)