Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lazy à cái phần ta có mình chưa hiểu lắm. bạn giúp mình duocj ko?
Ta có : \(mx^2-2\left(m+2\right)x+m+7=0\left(a=m;b=-2m-4;c=m+7\right)\)
Để phương trình có 2 nghiệm phân biệt ta có : \(\Delta>0\)hay
\(\left(-2m-4\right)^2-4m\left(m+7\right)=-12m+16>0\)
\(\Leftrightarrow-12m+16>0\Leftrightarrow-12m>16\Leftrightarrow m>-\frac{4}{3}\)
Theo Vi et : \(x_1+x_2=\frac{2m+4}{m};x_1x_2=\frac{m+7}{m}\)
\(\Leftrightarrow m\left(x_1+x_2\right)=2m+4\)(*)
Mà \(x_1x_2=\frac{m+7}{m}\Leftrightarrow m=\frac{7}{x_1x_2-1}\)(**)
Thay vào pt (*) ta có : \(\frac{7}{x_1x_2-1}\left(x_1+x_2\right)=2.\frac{7}{x_1x_2-1}+4\)
a) Tại m = -2 thì PT trở thành:
\(x^2-2\left(-2-1\right)x+\left(-2\right)^2-1=0\)
\(\Leftrightarrow x^2+6x+3=0\)
\(\Delta^'=3^2-1\cdot3=6>0\)
Khi đó PT có 2 nghiệm phân biệt
\(x_1=-3+\sqrt{6}\) ; \(x_2=-3-\sqrt{6}\)
b) Theo hệ thức Viète ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(\frac{x_1+x_2}{2}+1\right)^2=m^2\\x_1x_2+1=m^2\end{cases}}\)
\(\Rightarrow\left(\frac{x_1+x_2}{2}+1\right)^2=x_1x_2+1\) là hệ thức liên hệ