Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) thay \(n=0\) vào phương trình (i)
ta có : (i) \(\Leftrightarrow x^2+mx-3=0\)
ta có : \(\Delta=\left(m\right)^2-4.1.\left(-3\right)=m^2+12\ge12>0\forall m\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt với mọi m (đpcm)
Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)
PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)
=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m
Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)
Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)
Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)
Để pt cho có 2 nghiệm thì \(\Delta=m^2-4n\ge0\Leftrightarrow m^2\ge4n\) (*)
Theo Vi - et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n\end{matrix}\right.\)
Ta khai thác dữ kiện : \(x_1^3-x_2^3=7\)
\(\Rightarrow\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=7\)
\(\Rightarrow x_1^2+x_1x_2+x_2^2=7\) (1)
\(\Rightarrow\left(x_1-x_2\right)^2+3x_1x_2=7\)
\(\Rightarrow3n=7-1=6\Rightarrow n=2\)
Ta lại có từ (1) suy ra :
\(\Rightarrow\left(x_1+x_2\right)^2-x_1x_2=7\)
\(\Rightarrow m^2=7+x_1x_2=7+n=7+2=9\)
\(\Rightarrow m=\pm3\)
Thử lại ta thấy các giá trị đều thỏa mãn (*)
Vậy \(\left(m,n\right)=\left(-3,2\right);\left(3,2\right)\)
\(\Delta=m^2+12>0\) ; \(\forall m\)
\(\Rightarrow\) Khi \(n=0\) thì pt có nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n-3\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\\left(x_1+x_2\right)\left(x_1-x_2\right)=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=3\end{matrix}\right.\)
Thế vào hệ thức Viet: \(\left\{{}\begin{matrix}4+3=-m\\4.3=n-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-7\\n=15\end{matrix}\right.\)