Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm m sao cho \(\Delta=0\)rồi thay vào pt tìm nghiệm
b)\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=2^2-2.\left(1+2m\right)=8\Rightarrow m=-\frac{3}{2}\)
Cho mình bổ sung thêm phần xác định m chút nha
Áp dụng hệ thức viets vào phương trình (1 ) ta có
\(x_1+x_2=S=-2;x_1.x_2=p=1+2m\) Hai số x1 và x2 tồn tại khi \(S^2-4P\ge0\Leftrightarrow4-4\left(1+2m\right)\ge0\)=> \(-8m\ge0\Rightarrow m\le0\)
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
Câu a :
Thay \(m=2\) vào pt ta có :
\(x^2+8x+7=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-7\end{matrix}\right.\)
Câu b :
Ta có :
\(\Delta=4\left(m+2\right)^2-4\left(4m-1\right)\)
\(=4m^2+16m+16-16m+4\)
\(=4m^2+20>0\)
Do đó phương trình luôn có 2 nghiệm phân biệt .
Theo hệ thức vi - ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-2m-4\\x_1\times x_2=4m-1\end{matrix}\right.\)
Mà : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2\times x_1\times x_2=30\)
\(\Leftrightarrow\left(-2m-4\right)^2-2\left(4m-1\right)=30\)
\(\Leftrightarrow4m^2+16m+16-8m+2=30\)
\(\Leftrightarrow4m^2+8m-12=0\)
\(\Leftrightarrow4\left(m^2+2m-3\right)=0\)
\(\Leftrightarrow4\left(m-1\right)\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m-1=0\\m+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)
Vậy \(m=-3\) or \(m=1\)
\(a,\Delta=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)
Nên pt đã cho luôn có 2 nghiệm phân biệt với mọi m
b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)
Ta có \(B=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}=1\)
\(\Leftrightarrow\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=1\)
\(\Leftrightarrow\frac{2\left(m-1\right)+3}{m^2+2}=1\)
\(\Leftrightarrow\frac{2m+1}{m^2+2}=1\)
\(\Leftrightarrow2m+1=m^2+2\)
\(\Leftrightarrow m^2-2m+1=0\)
\(\Leftrightarrow\left(m-1\right)^2=0\)
\(\Leftrightarrow m=1\)
pt (1) có \(\Delta'\)= (-m)2-m+2= m2-2.\(\dfrac{1}{2}\).m + \(\dfrac{1}{4}-\dfrac{1}{4}\)+2 = ( m-\(\dfrac{1}{2}\))2+\(\dfrac{7}{4}\)
nhận thấy : ( m-\(\dfrac{1}{2}\))2 \(\ge\)0\(\forall\)m
==> ( m-\(\dfrac{1}{2}\))2+\(\dfrac{7}{4}\)\(\ge\)\(\dfrac{7}{4}\)>0
==> \(\Delta'\)>0 ==> pt (1) luôn có 2 nghiệm phân biệt
theo hệ thức vi ét ta có :\(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=-2\end{matrix}\right.\)(2)
mà M=\(\dfrac{-24}{x1^2+x2^2-6x1x2}=\dfrac{-24}{\left(x1+x2\right)^2-8x1.x2}\)
thay (2) vào M ta đc M=\(\dfrac{-24}{\left(2m\right)^2-8\left(m-2\right)}=\dfrac{-24}{4m^2-8m+16}=\dfrac{-24}{\left(4m^2-8m+4\right)+12}=\dfrac{-24}{\left(2m-2\right)^2+12}\)
nhận thấy (2m-2)2+12 \(\ge\)12
==> M \(\ge\)-2
dấu ''=,, xảy ra <=> m=1
vậy.......................
a) Ta có : \(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)
Để pt có 2 nghiệm phân biêt \(\Leftrightarrow\Delta'>0\Leftrightarrow m< -1\)
b) Theo hệ thức Viet \(\hept{\begin{cases}S=x_1+x_2=-2\left(m+1\right)\\P=x_1x_2=m^2+4m+3\end{cases}}\)
\(\Rightarrow A=m^2+4m+3+4\left(m+1\right)=m^2+4m+3+4m+4=m^2+8m+7\)
c) Ta có : \(A=m^2+8m+7=m^2+8m+16-9=\left(m+4\right)^2-9\ge-9\)
Dấu " = " xảy ra khi <=> m = -4 ( tm m < -1 )
Vậy minA = -9 tại m = -4