K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

a.

Ta co:

\(\orbr{\begin{cases}x^2-2x-3=0\left(1\right)\left(x\ge0\right)\\x^2+2x-3=0\left(2\right)\left(x< 0\right)\end{cases}}\)

(1)\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(l\right)\\x=3\left(n\right)\end{cases}}\)

(2)\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=-3\left(n\right)\end{cases}}\)

b.

Ta lai co:

\(\orbr{\begin{cases}x^2-2x+1-4a^2=0\left(3\right)\left(x\ge0\right)\\x^2+2x+1-4a^2=0\left(4\right)\left(x< 0\right)\end{cases}}\)

Xet (3)

De phuong trinh dau co 4 nghiem thi PT(3) co nghiem

\(\Rightarrow\Delta^`>0\)

\(\Leftrightarrow4a^2>0\)

\(\Leftrightarrow a>0\)

\(\Rightarrow x_1=1+2a;x_2=1-2a\)

Tuong tu

(4)

\(a>0\)

\(\Rightarrow x_3=-1+2a;x_4=-1-2a\)

\(\Rightarrow S=\left(1+2a\right)^2+\left(1-2a\right)^2+\left(-1+2a\right)^2+\left(-1-2a\right)^2\)

\(=2\left(1+2a\right)^2+2\left(1-2a\right)^2\)

\(\Rightarrow S< +\infty\)

15 tháng 5 2017

what the đề yêu cầu ?

NV
5 tháng 5 2019

\(\left\{{}\begin{matrix}x_1+x_2=-2019\\x_1x_2=2\end{matrix}\right.\) \(\left\{{}\begin{matrix}x_3+x_4=-2020\\x_3x_4=2\end{matrix}\right.\)

\(Q=\left(x_1+x_3\right)\left(x_1+x_4\right)\left(x_2-x_3\right)\left(x_2-x_4\right)\)

\(Q=\left(x_1^2+x_1x_4+x_1x_3+x_3x_4\right)\left(x_2^2-x_2x_4-x_2x_3+x_3x_4\right)\)

\(Q=\left(x_1^2+x_1\left(x_3+x_4\right)+x_3x_4\right)\left(x_2^2-x_2\left(x_3+x_4\right)+x_3x_4\right)\)

\(Q=\left(x_1^2-2020x_1+2\right)\left(x_2^2+2020x_2+2\right)\)

Mặt khác do \(x_1\); \(x_2\) là nghiệm của \(x^2+2019x+2=0\) nên:

\(\left\{{}\begin{matrix}x_1^2+2019x_1+2=0\\x_2^2+2019x_2+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2+2=-2019x_1\\x_2^2+2=-2019x_2\end{matrix}\right.\)

\(\Rightarrow Q=\left(-2019x_1-2020x_1\right)\left(-2019x_2+2020x_2\right)\)

\(Q=-4039x_1.x_2=-4039.2=-8078\)

16 tháng 4 2016

khó thế

NV
28 tháng 6 2020

Giả sử tất cả các pt dưới đây đều có nghiệm

\(\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)=m\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)=m\)

Đặt \(x^2-5x+4=t\) \(\Rightarrow x^2-5x+4-t=0\) (1)

\(\Rightarrow t\left(t+2\right)=m\Leftrightarrow t^2+2t-m=0\) (2)

Giả sử (2) có 2 nghiệm \(t_1;t_2\)

Theo Viet: \(\left\{{}\begin{matrix}t_1+t_2=-2\\t_1t_2=-m\end{matrix}\right.\)

Thay vào (1): \(\left[{}\begin{matrix}x^2-5x+4-t_1=0\\x^2-5x+4-t_2=0\end{matrix}\right.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=4-t_1\\x_3+x_4=5\\x_3x_4=4-t_2\end{matrix}\right.\)

\(Q=\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=\frac{5}{4-t_1}+\frac{5}{4-t_2}=\frac{40-5\left(t_1+t_2\right)}{\left(4-t_1\right)\left(4-t_2\right)}\)

\(=\frac{40-5\left(t_1+t_2\right)}{t_1t_2-4\left(t_1+t_2\right)+16}=\frac{40-5.\left(-2\right)}{-m-4.\left(-2\right)+16}=\frac{50}{24-m}\)

19 tháng 6 2020

Ta có : \(\left(x-7\right)\left(x-6\right)\left(x+2\right)\left(x+3\right)=m\)

=> \(\left(x^2-7x+3x-21\right)\left(x^2-6x+2x-12\right)=m\)

=> \(\left(x^2-4x-21\right)\left(x^2-4x-12\right)=m\)

- Đặt \(x^2-4x=a\) ta được phương trình :

\(\left(a-21\right)\left(a-12\right)=m\)

=> \(a^2-21a-12a+252-m=0\)

=> \(a^2-33a+252-m=0\)

=> \(\Delta=b^2-4ac=\left(-33\right)^2-4\left(252-m\right)=81+4m\)

Lại có : \(x^2-4x=a\)

=> \(x^2-4x-a=0\) ( I )

- Để phương trình ( I ) có 4 nghiệm phân biệt

<=> Phương trình ( II ) có hai nghiệm phân biệt

<=> \(\Delta>0\)

<=> \(m>-\frac{81}{4}\)

Nên phương trình có hai nghiệm phân biệt :

\(\left\{{}\begin{matrix}x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{33-\sqrt{81+4m}}{2}\\x_2=\frac{33+\sqrt{81+4m}}{2}\end{matrix}\right.\)

=> Ta được phương trình ( I ) là :

\(\left\{{}\begin{matrix}x^2-4x+\frac{\sqrt{81+4m}-33}{2}=0\\x^2-4x-\frac{\sqrt{81+4m}+33}{2}=0\end{matrix}\right.\)

- Theo vi ét : \(\left\{{}\begin{matrix}\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=\frac{33-\sqrt{81+4m}}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x_3+x_4=4\\x_3x_4=\frac{33+\sqrt{81+4m}}{2}\end{matrix}\right.\end{matrix}\right.\)

- Để \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)

<=> \(\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=4\)

<=> \(\frac{4}{\frac{33-\sqrt{81+4m}}{2}}+\frac{4}{\frac{33+\sqrt{81+4m}}{2}}=4\)

<=> \(\frac{1}{\frac{33-\sqrt{81+4m}}{2}}+\frac{1}{\frac{33+\sqrt{81+4m}}{2}}=1\)

<=> \(\frac{2}{33-\sqrt{81+4m}}+\frac{2}{33+\sqrt{81+4m}}=1\)

<=> \(\frac{2\left(33-\sqrt{81+4m}\right)+2\left(33+\sqrt{81+4m}\right)}{\left(33-\sqrt{81+4m}\right)\left(33+\sqrt{81+4m}\right)}=1\)

<=> \(66-2\sqrt{81+4m}+66+2\sqrt{81+4m}=1089-81-4m\)

<=> \(66+66=1089-81-4m\)

<=> \(m=219\)

NV
14 tháng 2 2020

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)\left(x+1\right)\left(x+3\right)=m\)

\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x+3\right)=m\)

Đặt \(x^2+4x-5=t\ge-9\)

\(\Rightarrow t\left(t+8\right)-m=0\Leftrightarrow t^2+8t-m=0\) (1)

Để (1) có 2 nghiệm pb thỏa mãn \(t>-9\Rightarrow-16< m< 9\)

Gọi \(x_1;x_2\) là 2 nghiệm của \(x^2+4x-5-t_1=0\) ; \(x_3;x_4\) là 2 nghiệm của \(x^2+4x-5-t_2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=-t_1-5\end{matrix}\right.\)\(\left\{{}\begin{matrix}x_3+x_4=-4\\x_3x_4=-t_2-5\end{matrix}\right.\)

Ta cũng có \(\left\{{}\begin{matrix}t_1+t_2=-8\\t_1t_2=-m\end{matrix}\right.\)

\(\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=-1\Leftrightarrow\frac{-4}{-t_1-5}+\frac{-4}{-t_2-5}=-1\)

\(\Leftrightarrow4\left(t_1+t_2\right)+40=-t_1t_2-5\left(t_1+t_2\right)-25\)

\(\Leftrightarrow t_1t_2+9\left(t_1+t_2\right)+65=0\)

\(\Leftrightarrow-m-72+65=0\Rightarrow m=-7\) (thỏa mãn)