K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2021

\(\Delta^'=\left(-1\right)^2-\left(m-1\right)=2-m\)

Để PT có nghiệm thì: \(m\le2\)

Khi đó theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m-1\end{cases}}\)

Ta có: \(x_1^4-x_1^3=x_2^4-x_2^3\)

\(\Leftrightarrow\left(x_1^4-x_2^4\right)-\left(x_1^3-x_2^3\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2\right)-\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[2\left(x_1^2+x_2^2\right)-x_1^2-x_1x_2-x_2^2\right]=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[4-3\left(m-1\right)\right]=0\)

Nếu \(x_1-x_2=0\Rightarrow x_1=x_2=1\Rightarrow m=1\left(tm\right)\)

Nếu \(4-3\left(m-1\right)=0\Rightarrow m=\frac{7}{3}\left(ktm\right)\)

Vậy m = 1

11 tháng 5 2021

\(x^2+ax+b+1=0\)

\(\Delta=a^2-4b-4\)

Để pt có 2 nghiệm pb \(\Leftrightarrow\Delta>0\Leftrightarrow a^2-4b-4>0\)

Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=-a\\x_1.x_2=b+1\end{cases}}\)

Ta có: \(\hept{\begin{cases}x_1-x_2=3\\x_1^3-x_2^3=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\x_1^2+x_1x_2+x_2^2=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\\left(x_1-x_2\right)^2+3x_1x_2=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\x_1x_2=-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1=3+x_2\\\left(3+x_2\right)x_2=-2\left(1\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x_2^2+3x_2+2=0\)

\(\Delta=1\)

\(\Rightarrow\)pt có 2 nghiệm pb \(\orbr{\begin{cases}x_2=\frac{-3+1}{2}=-1\Rightarrow x_1=2\\x_2=\frac{-3-1}{2}=-2\Rightarrow x_1=1\end{cases}}\)

TH1: \(x_1=2;x_2=-1\)

\(\Rightarrow\hept{\begin{cases}a=-1\\b=-3\end{cases}}\)( LOẠI vì a^2 -4b-4 <0 )

TH2: \(x_1=1;x_2=-2\)

\(\Rightarrow\hept{\begin{cases}a=1\\b=-3\end{cases}}\)( tm )

VẬY ...

20 tháng 4 2020

Bài giải 

Ta có : \(\hept{\begin{cases}x_1.x_2=m^2+3\\x_1+x_2=2\left(m+1\right)\end{cases}}\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{8}{x_1.x_2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{8}{x_1.x_2}\)

<=> ( x1 + x2 ) 2 -2x1x2 = 8

<=>4(m+1)2 -2(m2+ 3 ) = 8 <=> 2m2 + 8m - 10=0

<=> \(\orbr{\begin{cases}m=1\\m=-5\left(L\right)\end{cases}}\)

15 tháng 3 2020

\(8x^2-8x+m^2+1=0\) ( 1 )

\(\Delta'=16-8\left(m^2+1\right)=16-8m^2-8=8-8m^2\)

PT ( 1 ) có hai nghiệm x1,x2 \(\Leftrightarrow\Delta'=8-8m^2\ge0\)\(\Leftrightarrow m^2\le1\Leftrightarrow-1\le m\le1\)

Áp dụng hệ thức Vi-ét, ta có : 

\(\hept{\begin{cases}x_1+x_2=1\\x_1x_2=\frac{m^2+1}{8}\end{cases}}\)

Do đó : \(x_1^4-x_2^4=x_1^3-x_2^3\)

\(\Leftrightarrow x_1^4-x_1^3=x_2^4-x_2^3\)

\(\Leftrightarrow x_1^3\left(x_1-1\right)-x_2^3\left(x_2-1\right)=0\Leftrightarrow-x_1^3x_2+x_2^3x_1=0\)

\(\Leftrightarrow x_1x_2\left(x_1^2-x_2^2\right)=0\Leftrightarrow x_1x_2\left(x_1-x_2\right)\left(x_1+x_2\right)=0\)

Dễ thấy \(x_1x_2=\frac{m^2+1}{8}>0;x_1+x_2=1>0\)nên \(x_1-x_2=0\Leftrightarrow x_1=x_2\)

Từ đó tìm được \(m=\pm1\)

2 tháng 3 2018

Ta có để phương trình có nghiệm thì:

\(\Delta=k^2-4\ge0\)

\(\Leftrightarrow k\ge2;k\le-2\)

Theo đề thì ta có

\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\ge3\)

\(\Leftrightarrow x_1^4+x_2^4-3\left(x_1x_2\right)^2\ge0\)

\(\Leftrightarrow\left(\left(x_1+x_2\right)^2-2x_1x_2\right)^2-5x_1x_2\ge0\)

\(\Leftrightarrow\left(4k^2-4\right)^2-5.4^2\ge0\)

Làm nốt

4 tháng 3 2018

\(\left|k\right|\ge2\)

\(P=\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left(\frac{\left(x_1+x_2\right)^2}{x_1x_2}-2\right)^2-2\\ \)

\(P=\left(\frac{\left(2k\right)^2}{4}-2\right)^2-2=\left(k^2-2\right)^2-2\)

\(P\ge3\Rightarrow\left(k^2-2\right)^2\ge5\Leftrightarrow\orbr{\begin{cases}k^2-2\le-\sqrt{5}\left(l\right)\\k^2-2\ge\sqrt{5}\left(n\right)\end{cases}}\)

\(\orbr{\begin{cases}k\le-\sqrt{2+\sqrt{5}}\\k\ge\sqrt{2+\sqrt{5}}\end{cases}}\)