K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2019

hướng dẫn

a) để phan thức xác định thì mẫu khác 0 

khi và chỉ khi 2x(x+1) khác 0 đó làm nốt

b)  =1 khi và chỉ khi 5x+5=2x^2+2x

chuyển vế -2x^2+3x+5=0 khi và chỉ khi (x+1)(-2x+5)=0 làm nốt

12 tháng 9 2019

Cho phân thức \(\frac{5x+5}{2x^2+2x}\) :

Câu a )

\(2x^2+2x=2x\left(x+1\right)\ne0\)

\(\Leftrightarrow2x\ne0\) và \(x+1\ne0\)

\(\Leftrightarrow x\ne0\) và \(x\ne-1\)

Câu b )

\(\frac{5x+5}{2x^2+2x}=\frac{5\left(x+1\right)}{2x\left(x+1\right)}=\frac{5}{2x}\)

\(\frac{5}{2x}=1\Leftrightarrow5=2x\Leftrightarrow x=\frac{5}{2}\)

Vì \(\frac{5}{2}\) thỏa mãn với điều kiện của 2 tam giác nên \(x=\frac{5}{2}\)

Chúc bạn học tốt !!!

11 tháng 12 2017

Đặt \(\frac{5x+5}{2x^2+2x}=A\)

a/ Để A xác định\(\Leftrightarrow2x^2+2x\ne0\Leftrightarrow2x\left(x+1\right)\ne0\Rightarrow x\ne0;x\ne-1\)

        TXĐ:\(x\ne0;x\ne-1\)

b/ Với \(x\ne0;x\ne-1\)ta có \(A=\frac{5x+5}{2x^2+2x}\)

Để A=1\(\Leftrightarrow5x+5=2x^2+2x\)

\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)

\(\Leftrightarrow5=2x\)

\(\Rightarrow x=\frac{2}{5}\)( TM )

a: ĐKXĐ: x<>0; x<>-1

b: E=5(x+1)/2x(x+1)=5/2x

b: Để E=1 thì 5/2x=1

=>2x=5

=>x=5/2

7 tháng 12 2018

a) Phân thức xác định \(\Leftrightarrow2x^2+2x\ne0\)

\(\Leftrightarrow2x\left(x+1\right)\ne0\)

\(\Rightarrow\orbr{\begin{cases}2x\ne0\\x+1\ne0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

b) Để phân thức bằng 1 thì :

\(5x+5=2x^2+2x\)

\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)

\(\Leftrightarrow5=2x\)

\(\Leftrightarrow x=\frac{5}{2}\)

Vậy.......

7 tháng 12 2018

Phân thức xác định

\(\Leftrightarrow2x^2+2x\ne0\)

\(\Leftrightarrow2x\left(x+2\right)\ne0\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)

Vậy với \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\) thì phân thức xác định

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

2 tháng 6 2016

a) ĐKXĐ:2x2+2x khác 0<=> 2x(x+1) khác 0 <=> 2x khác 0 và x+1 khác 0 <=> x khác 0 và x khác -1.

b) \(\frac{5x+5}{2x^2+2x}\)=1<=>5x+5=2x2+2x<=>2x2-3x-5=0<=>(2x2+2x)-(5x+5)=0<=>2x(x+1)-5(x+1)=0<=>(x+1)(2x-5)=0<=>\(\hept{\begin{cases}x+1=0\\2x-5=0\end{cases}}\)<=>\(\hept{\begin{cases}x=-1\left(l\right)\\x=\frac{5}{2}\left(tm\right)\end{cases}}\)

Vậy phân thức bằng 1 khi x=\(\frac{5}{2}\)

17 tháng 12 2016

a) ĐKXĐ: \(^{x^3+2x^2+x+2}\)khác 0

=> x^2(x+2)+(x+2) Khác 0

=> (x^2+1)(x+2) khác 0

=> x^2 khác -1(vô lý) và x khác -2

Vậy x khác -2 thì biểu thức A được xác định

b)\(A=\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{x^2\left(x+2\right)+\left(x+2\right)}\)

\(=\frac{3x^2\left(x+2\right)}{\left(x^2+1\right)\left(x+2\right)}=\frac{3x^2}{x^2+1}\)

Để A=2 thì \(\frac{3x^2}{x+2}=2\)=>\(3x^2=2\left(x^2+1\right)=>3x^2=2x^2+2\)

\(=>x^2=2=>x=\sqrt{2}\)(Thỏa mãn điều kiện xác định)

17 tháng 12 2016

mơm nhìu nhaKagamine Len love Vocaloid02

20 tháng 8 2016

a )\(\left[\begin{array}{nghiempt}x+1\ne0\\2x-3\ne0\end{array}\right.\)

\(ĐKXĐ:x\ne-1,x\ne\frac{3}{2}\)

b ) \(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{x\left(2x-3\right)}{\left(x+1\right)\left(2x-3\right)}=\frac{x}{x+1}\)

Để \(A=3\) thì :

 \(\frac{x}{x+1}=3\Leftrightarrow x=3x+3\Leftrightarrow x-3x=3\Leftrightarrow-2x=3\Leftrightarrow x=-\frac{3}{2}\)

Chúc bạn học tốt

15 tháng 12 2018

a, ĐỂ \(\frac{3x+3}{x^2-1}=\frac{3x+3}{\left(x+1\right)\left(x-1\right)}\)    Xác định 

\(\Rightarrow\left(x+1\right)\left(x-1\right)\ne0\)

\(\Rightarrow\hept{\begin{cases}x+1\ne0\\x-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-1\\x\ne1\end{cases}}}\)

KL : \(x\ne\pm1\)

b , 

15 tháng 12 2018

\(\frac{3x+3}{x^2-1}\)xác định 

\(\Leftrightarrow x^2-1\ne0\Leftrightarrow x\ne\pm1\)

Vậy điều kiện xác định của \(\frac{3x+3}{x^2-1}\)là \(x\ne\pm1\)

\(\frac{3x+3}{x^2-1}=-2\)

\(\Leftrightarrow\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=-2\)

\(\Leftrightarrow\frac{3}{x-1}=-2\)

\(\Leftrightarrow3=-2\left(x-1\right)\)

\(\Leftrightarrow\frac{-3}{2}=x-1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(x=\frac{-1}{2}\)là giá trị cần tìm

15 tháng 12 2018

\(a,\frac{5x+5}{2x^2+2x}=\frac{5x+5}{2x\left(x+1\right)}\)XÁc định 

\(\Leftrightarrow2x\left(x+1\right)\ne0\)

\(\Rightarrow\hept{\begin{cases}2x\ne0\\x+1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)

15 tháng 12 2018

\(\frac{5x+5}{2x^2+2x}=\frac{5\left(x+1\right)}{2x\left(x+1\right)}=1\)

\(\Rightarrow\frac{5}{2x}=1\)

\(\Rightarrow2x=5\Rightarrow x=2,5\)