K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

CÓ:P=10n+81/5n+3 = 2(5n+3)+75/5n+3 = 2 + (75/5n+3)

  P tối gản khi 75/5n+3 tối giản

    Mà 75 chia hết cho 2 số nguyên tố 3 và 5.

  Mà 5n+3 không chia hết cho 5 nên P tối giản khi 5n+3 không chia hết cho 7.

    Xét:5n+3 chia hết cho 7

    =>5n+3+7 chia hết cho 7

   =>5n+10 chia hết cho 7

   =>5(n+2) chia hết cho 7

   => n+2 chia hết cho 7   (vì (5,7)=1)

    =>n+2= 7k   (k thuộc N)

    => n=7k-2

   hay n=7k+5

   Mà 100<=n<=999

    =>100<=7k+5<=999

    =>95<=7k<=994

   =>14<=k<=142

     =>k thuộc {14 ;15;16;...;142}

     =>n thuộc {103;110;117;...;999}

    =>có 129 số n thì P rút gọn được

    =>Có:900-129=771 số n thì P tối giản

      Vậy có 771 số n có 3 chữ số để P tối giản

27 tháng 3 2015

tìm j` vậy? ko hỏi cho rõ ra thj` ai mà hỉu đc

27 tháng 3 2015

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

4 tháng 2 2022

hahaa

10 tháng 8 2017

a, (5n+2)9 = (2n+7)7

  45n+18=14n+49

  31n=31

  n=1

28 tháng 3 2018

a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)

\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)

\(\Leftrightarrow45n+18=14n+49\)

\(\Leftrightarrow31n=31\)

\(\Leftrightarrow n=1\)

n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)

Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.

\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)

Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)

Ta có bảng:

2n + 71-131-31
n-3-412-19
KLTMTMTMTM

 

Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)

c

kết bạn mình nha

20 tháng 3 2018

a, \(B=\frac{10n}{5n-3}\inℤ\Leftrightarrow10n⋮5n-3\)

\(\Rightarrow10n-6+6⋮5n-3\)

\(\Rightarrow2\left(5n-3\right)+6⋮5n-3\)

      \(2\left(5n-3\right)⋮5n-3\)

\(\Rightarrow6⋮5n-3\)

r` đến đây tự làm tiếp đc

b, \(B=\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{2\left(5n-3\right)+6}{5n-3}=\frac{2\left(5n-3\right)}{5n-3}+\frac{6}{5n-3}=2+\frac{6}{5n-3}\)

để B lớn nhất thì \(\frac{6}{5n-3}\) lớn nhất

\(\Rightarrow5n-3\) là số nguyên dương nhỏ nhất

+ xét 5n-3=1

=> 5n = 4

=> n = 4/5 (loại)

+ xét 5n-3=2

=> 5n = 5

=> n=1 (tm)

vậy n = 1 và \(B_{max}=2+\frac{6}{2}=5\)

25 tháng 8 2016

a) \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)

Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\Rightarrow\frac{6}{5n-3}\in Z\Rightarrow5n-3\in U\left(6\right)\)

Ta có bảng sau:

  5n - 3  -6  -3  -2  -1   1  2   3  6
    n  -0,6  0 0,2 0,4 0,8  1  1,2  1,8

Mà n thuộc Z  => n = { 0 ; 1 }

b) Để A lớn nhất thì \(2+\frac{6}{5n-3}\)có giá trị lớn nhất  => \(\frac{6}{5n-3}\)lớn nhất 

=> 5n - 3 nguyên dương nhỏ nhất ; 5n - 3 thuộc ước của 6 và n thuộc Z

=> 5n - 3 = 2  => x = 1 và \(\frac{6}{5n-3}=\frac{6}{2}=3\)  

Thay \(3=\frac{6}{5n-3}\)vào \(A=2+\frac{6}{5n-3}\)ta có:

\(A=2+3=5\)

Vậy giá trị lớn nhất của A là 5 khi x = 1

26 tháng 8 2016

a, Ta có : \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}\)

                             \(=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)

                             \(=2+\frac{6}{5n-3}\)

Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\)

\(\Rightarrow\frac{6}{5n-3}\in Z\)

\(\Rightarrow6\)chia hết cho\(5n-3\)

\(\Rightarrow5n-3\inƯ\left(6\right)\)

Ta có bảng sau :

       
       
       
5n-31-12-23-3
5n425160
n0,80,410,21,20

Vì \(n\in Z\)=> \(n\in\left\{0;1\right\}\)

11 tháng 4 2018

\(\text{a) Để B có giá trị nguyên thì}\)

\(10n⋮\left(5n-3\right)\)

\(\Rightarrow[2.\left(5n-3\right)+6⋮\left(5n-3\right)\)

\(\text{mà }\)\(2.\left(5n-3\right)⋮\left(5n-3\right)\)

\(\Rightarrow6⋮\left(5n-3\right)\)

\(\Rightarrow5n-3\in1;2;3;6;-1;-2;-3;-6\)

\(\Rightarrow5n\in4;5;6;9;2;1;0;-3\)\(\text{Vì }n\in Z\)

\(\Rightarrow n=0\text{hoặc}n=1\)

\(\text{b) Ta có}:B=\frac{10n}{5n-3}=\frac{2.\left(5n-3\right)+6}{5n-3}=2+\frac{6}{5n-3}\)

\(\text{Để B đạt GTLN thì }\frac{6}{5n-3}\text{đạt GTLN}\)

\(\text{Vì }6>0\Rightarrow\frac{6}{5n-3}\text{đạt GTLN khi}\) \(5n-3\text{ đạt GTLN }\)\(\Rightarrow\hept{\begin{cases}5n-3\text{ đạt GTNN}\\5n-3>0\end{cases}}\)

\(\Rightarrow5n-3=2\Rightarrow n=1\)

\(\text{Vậy GTLN của A là}\)\(5\)\(\text{khi }n=1\)