Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VD tổng nghịch đâỏ cảu ba số này là 2 thì:
Số lớn nhất là a, số nhỏ nhất là c.
Ta có: c ≤ b ≤ a (1)
Theo giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) = 2 (2)
Do (1) nên 2 = \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ≤ \(\dfrac{3}{c}\)
Vậy c = 1
Thay vào (2) ta dc :\(\dfrac{1}{a}+\dfrac{1}{b}\) = 1 ≤ \(\dfrac{2}{b}\)
Vậy a = 2 từ đó b = 2
3 số cần tìm là 1; 2; 2.
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
Bài 1:
a: \(\dfrac{a}{b}=\dfrac{a\cdot\left(-1\right)}{b\cdot\left(-1\right)}=\dfrac{-a}{-b}\)
b: \(\dfrac{a}{-b}=-\dfrac{a}{b}=-\dfrac{a}{b}\)
Ta có:
\(\frac{a}{b}=\frac{a\times\left(b+m\right)}{b\times\left(b+m\right)}=\frac{a\times b+a\times m}{b\times b+b\times m}\)
\(\frac{a+m}{b+m}=\frac{\left(a+m\right)\times b}{\left(b+m\right)\times b}=\frac{a\times b+m\times b}{b\times b+b\times m}\)
vì \(\frac{a}{b}>1\) nên \(a>b\), ta suy ra \(a\times m>b\times m\)
hay \(a\times b+a\times m>a\times b+m\times b\)
hay \(\frac{a\times b+a\times m}{b\times b+b\times m}>\frac{a\times b+m\times b}{b\times b+b\times m}\)
hay \(\frac{a}{b}>\frac{a+m}{b+m}\)
Vì \(\frac{a}{b}>1\)
=> a > b
=> a.m > b.m
=> a.m + a.b > b.m + a.b
=> a.(b + m) > b.(a + m)
=> \(\frac{a}{b}>\frac{a+m}{b+m}\)
Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự
\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\)nên M không là số tự nhiên
Bài làm:
a) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+11}{15+11}=\frac{24}{26}\)
b) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+10}{15+10}=\frac{23}{25}\)
c) Vì \(\frac{3}{5}< 1\)\(\Rightarrow\frac{3}{5}< \frac{3+30}{5+30}=\frac{33}{35}\)
Học tốt!!!!
1 lớp học có 2 học sinh một bạn bị chết hỏi còn bao nhiêu bạn
Bài 2:
a)Gọi \(UCLN\left(12n+1;30n+2\right)=d\)
Ta có:
\(\left[5\left(12n+1\right)\right]-\left[2\left(30n+2\right)\right]⋮d\)
\(\Rightarrow\left[60n+5\right]-\left[60n+4\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Suy ra \(\frac{12n+1}{30n+2}\) là phân số tối giản
b)Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
Ta có: \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)\(< \)\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\left(1\right)\)
Mà \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\left(2\right)\)
Từ (1) và (2) suy ra \(B< A< 1\Rightarrow B< 1\)
Vậy ta có điều phải chứng minh
Do \(\frac{a}{b}< 1\)=> a < b
=> a.m < b.m
=> a.m + a.b < b.m + a.b
=> a.(b + m) < b.(a + m)
=> \(\frac{a}{b}< \frac{a+m}{b+m}\)
trong tối nay nha huhu