K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2016

Do \(\frac{a}{b}< 1\)=> a < b

=> a.m < b.m

=> a.m + a.b < b.m + a.b

=> a.(b + m) < b.(a + m)

=> \(\frac{a}{b}< \frac{a+m}{b+m}\)

trong tối nay nha huhu

 

25 tháng 3 2017

VD tổng nghịch đâỏ cảu ba số này là 2 thì:
Số lớn nhất là a, số nhỏ nhất là c.
Ta có: c ≤ b ≤ a (1)
Theo giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) = 2 (2)
Do (1) nên 2 = \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)\(\dfrac{3}{c}\)
Vậy c = 1
Thay vào (2) ta dc :\(\dfrac{1}{a}+\dfrac{1}{b}\) = 1 ≤ \(\dfrac{2}{b}\)
Vậy a = 2 từ đó b = 2
3 số cần tìm là 1; 2; 2.

7 tháng 8 2016

Help me !!!!!!!!!!!! khocroikhocroikhocroi

Bài 2: 

a: Để E là số nguyên thì \(3n+5⋮n+7\)

\(\Leftrightarrow3n+21-16⋮n+7\)

\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)

b: Để F là số nguyên thì \(2n+9⋮n-5\)

\(\Leftrightarrow2n-10+19⋮n-5\)

\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)

hay \(n\in\left\{6;4;29;-14\right\}\)

Bài 1: 

a: \(\dfrac{a}{b}=\dfrac{a\cdot\left(-1\right)}{b\cdot\left(-1\right)}=\dfrac{-a}{-b}\)

b: \(\dfrac{a}{-b}=-\dfrac{a}{b}=-\dfrac{a}{b}\)

27 tháng 9 2016

Ta có:

                \(\frac{a}{b}=\frac{a\times\left(b+m\right)}{b\times\left(b+m\right)}=\frac{a\times b+a\times m}{b\times b+b\times m}\)

                \(\frac{a+m}{b+m}=\frac{\left(a+m\right)\times b}{\left(b+m\right)\times b}=\frac{a\times b+m\times b}{b\times b+b\times m}\)

vì \(\frac{a}{b}>1\) nên \(a>b\), ta suy ra \(a\times m>b\times m\)

hay \(a\times b+a\times m>a\times b+m\times b\)

hay \(\frac{a\times b+a\times m}{b\times b+b\times m}>\frac{a\times b+m\times b}{b\times b+b\times m}\)

hay \(\frac{a}{b}>\frac{a+m}{b+m}\)

27 tháng 9 2016

Vì \(\frac{a}{b}>1\)

=> a > b

=> a.m > b.m

=> a.m + a.b > b.m + a.b

=> a.(b + m) > b.(a + m)

=> \(\frac{a}{b}>\frac{a+m}{b+m}\)

1 tháng 3 2020

Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

Tương tự

\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)

\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)

\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)

Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)

Tương tự

\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)

\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)

Vậy \(1< M< 2\)nên M không là số tự nhiên

22 tháng 6 2020

Bài làm:

a) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+11}{15+11}=\frac{24}{26}\)

b) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+10}{15+10}=\frac{23}{25}\)

c) Vì \(\frac{3}{5}< 1\)\(\Rightarrow\frac{3}{5}< \frac{3+30}{5+30}=\frac{33}{35}\)

Học tốt!!!!

22 tháng 6 2020

1 lớp học có 2 học sinh một bạn bị chết hỏi còn bao nhiêu bạn

5 tháng 1 2017

Bài 2:

a)Gọi \(UCLN\left(12n+1;30n+2\right)=d\)

Ta có:

\(\left[5\left(12n+1\right)\right]-\left[2\left(30n+2\right)\right]⋮d\)

\(\Rightarrow\left[60n+5\right]-\left[60n+4\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Suy ra \(\frac{12n+1}{30n+2}\) là phân số tối giản

b)Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

Ta có: \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)\(< \)\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\left(1\right)\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\left(2\right)\)

Từ (1) và (2) suy ra \(B< A< 1\Rightarrow B< 1\)

Vậy ta có điều phải chứng minh

5 tháng 1 2017

Cảm ơn bạn!