K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: (d) có hệ số góc là m nên (d): y=mx+b

Thay x=-1 và y=-2 vào (d), ta được:

\(m\cdot\left(-1\right)+b=-2\)

=>b-m=-2

=>b=m-2

=>(d): y=mx+m-2

Phương trình hoành độ giao điểm là:

\(-x^2=mx+m-2\)

=>\(-x^2-mx-m+2=0\)

=>\(x^2+mx+m-2=0\)(1)

\(\text{Δ}=m^2-4\cdot1\cdot\left(m-2\right)\)

\(=m^2-4\left(m-2\right)\)

\(=m^2-4m+8=\left(m-2\right)^2+4>=4\forall m\)

=>(P) luôn cắt (d) tại hai điểm phân biệt

b: Để (P) cắt (d) tại hai điểm nằm về hai phía so với trục tung thì phương trình (1) phải có hai nghiệm phân biệt trái dấu

=>1(m-2)<0

=>m-2<0

=>m<2

15 tháng 3 2022

lỗi

15 tháng 3 2022

đc chưa bạn?

 

7 tháng 11 2017

Bài 3 làm sao v ạ?

1 tháng 6 2017

Bài này sử dựng định lý viet để chứng minh:

  1. Gọi phương trình đường thẳng (d) có hệ số góc a có dạng : \(y=ax+b\left(a\ne0\right)\)\(M\left(1,2\right)\)thuộc (d) nên : \(2=a+b\Rightarrow b=2-a\left(1\right)\). Xét phương trình hoành độ giao điểm có : \(x^2=ax+b\left(2\right)\)thế 1 vào 2 có \(x^2=ax+2-a\Leftrightarrow x^2-ax-\left(2-a\right)=0\)phương trình có : \(\Delta=a^2+4\left(2-a\right)=a^2-4a+8\)\(\Rightarrow\Delta=\left(a^2-4a+4\right)+4=\left(a-2\right)^2+4\ge4\forall a\) nên phương trình luôn có hai nghiệm phân biệt với mọi giá tri của \(a\ne0\)
  2. Khi đó parabol cắt d tại hai điểm A,B  với A,B có hoành độ lần lượt là \(x_A,x_B\) theo vi ét ta có : \(\hept{\begin{cases}x_A+x_B=a\\x_Ax_B=-\left(2-a\right)\end{cases}}\)ta xét \(x_A+x_B-x_Ax_B=a+\left(2-a\right)=2\left(dpcm\right)\)
10 tháng 2 2021

kiểm tra lại đề nhé lỗi quá

a: Thay x=1 và y=3 vào (d), ta được:

m+3-m=3

=>3=3(luôn đúng)

b: PTHĐGĐ là:

x^2-mx-3+m=0

=>x^2-mx+m-3=0

Để (d) cắt (P) tại hai điểm phân biệt thì m-3<0

=>m<3

27 tháng 5 2021

Xét pt hoành độ gđ của (P) và (d) có:

\(x^2=\left(2m-1\right)x+8\)

\(\Leftrightarrow x^2-\left(2m-1\right)x-8=0\) (*)

Có \(ac=-8< 0\) => pt luôn có hai nghiệm trái dấu

=> (d) luôn cắt (P) tại hai điểm pb có hoành độ trái dấu hay (d) luôn cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung

Hoành độ gđ của A và B là hai nghiệm của pt (*) mà \(x_1< x_2\Rightarrow x_1< 0< x_2\)

Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=-8\end{matrix}\right.\)  (|)

Giả sử \(\dfrac{\left|x_1\right|}{\left|x_2\right|}=4\)

\(\Leftrightarrow\dfrac{-x_1}{x_2}=4\)\(\Leftrightarrow x_1+4x_2=0\)  (||)

Từ (|), (||) có hệ: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1+4x_2=0\\x_1x_2=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{1-2m}{3}\\x_1=\dfrac{4\left(2m-1\right)}{3}\\x_1x_2=-8\end{matrix}\right.\)\(\Rightarrow\dfrac{\left(1-2m\right)}{3}.\dfrac{4\left(2m-1\right)}{3}=-8\) \(\Leftrightarrow\left(1-2m\right)^2=18\)

\(\Leftrightarrow m=\dfrac{1\pm\sqrt{18}}{2}\)

Vậy...