Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = ( -a + b - c ) - ( -a - b - c )
A = -a + b - c + a + b +c
A = ( -a + a ) + ( b + b ) + ( -c + c )
A = 0 + 2b + 0
A = 2b.
b) Thay b vào, ta có:
A = 2. ( -1 )
A = -2.
a) ( a + b ) . ( a + b )
= a2 + ab + ab + b2
= a2 + 2ab + b2
b) ( a - b ) . ( a - b )
= a2 - ab - ab + b2
= a2 - 2ab + b2
Tuy có vẻ hơi muộn nhưng thôi
Nếu A là số tự nhiên ⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)
\(\Rightarrow7^{2004}-3^{92^{94}}⋮10\)
Thật vậy, ta có :
72004 với lũy thừa là 2004 ⋮ 4
⇒ 72004 = ( .......... 9 )
392^94 với lũy thừa là 9294 mà 92 ⋮ 4 ⇒ 9294 ⋮ 4
⇒ 392^94 = ( .......... 9 )
⇒ 72004 - 392^94 = ( .......... 9 ) - ( ............ 9) = ( ........... 0 ) ⋮ 10
⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)
A=1/10.(72004-392^94) là số tự nhiên.
\(\left(3n\right)^{100}\\ =3^{100}.n^{100}\\ =\left(3^4\right)^{25}.n^{100}\\ =81^{25}.n^{100}⋮81\)
Vậy \(\left(3n\right)^{100}⋮81\)
Chúc em học tốt!
a) |3-x|=7
=> 3-x=7 hay 3-x=-7
Với 3-x=7
x=3-7
x=-4
Với 3-x=-7
x=3-(-7)
x=10
Vậy x \(\in\){-4;10}
b) |x| < 4
=>x<4
Vậy x\(\in\){3;2;1;0;-1;-2;-3}
a, |3 - x| = 7
\(\Rightarrow\left\{\begin{matrix}3-x=7\\3-x=-7\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=-4\\x=10\end{matrix}\right.\)
b, |x| < 4
=> x = {-3;-2;-1;0;1;2;3}
1/ a, \(50-\left[30-\left(6-2\right)^2\right]\)
\(=50-\left[30-3^2\right]\)
\(=50-30+9\)
\(=20+9=29\)
2/ a, \(124+\left(118-x\right)=217\)
\(\Leftrightarrow118-x=3\)
\(\Leftrightarrow x=115\)
Vậy ...
b/ \(814-\left(x-305\right)=712\)
\(\Leftrightarrow x-305=102\)
\(\Leftrightarrow x=407\)
Vậy ...
c/ \(x-32:16=48\)
\(\Leftrightarrow x-2=48\)
\(\Leftrightarrow x=50\)
Vậy ...
d/ \(\left(x-32\right):16=48\)
\(\Leftrightarrow x-32=768\)
\(\Leftrightarrow x=800\)
Vậy .
Ta có: \(\left|x-y\right|+\left|x-1\right|\ge0\)
\(\Rightarrow A=\left|x-y\right|+\left|x-1\right|+2017\ge2017\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left|x-y\right|=0\\\left|x-1\right|=0\end{matrix}\right.\Rightarrow x=y=1\)
Vậy \(MIN_A=2017\) khi x = y = 1
\(P=\left(a-1\right)+|a-1|+\left(a-1\right)+|a-1|+...+|a-1|=50\left(a-1\right)+50|a-1|\)
Nếu \(a\ge1\) thì ta được:
\(P=50\left(a-1\right)+50\left(a-1\right)=100\left(a-1\right)\)
Nếu \(P< 1\) thì ta được
\(P=50\left(a-1\right)-50\left(a-1\right)=0\)
ê lại thất hứa à