K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

ĐK:

\(\left\{{}\begin{matrix}x-1\ge0\\2-x>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x< 2\end{matrix}\right.\)

ĐKXĐ: \(1\le x< 2\)

12 tháng 8 2021

a) ĐKXĐ: \(x\ge0;x\ne1\)

b) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{2}{\sqrt{x}+1}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)

12 tháng 8 2021

Giúp mình với

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\dfrac{3x+2\sqrt{x}-5}{x+\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{1-\sqrt{x}}\)

\(=\dfrac{3x+2\sqrt{x}-5+\sqrt{x}-1+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\cdot\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3x+4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1}{\sqrt{x}}\)

b: Thay \(x=3+2\sqrt{2}\) vào P, ta được:

\(P=\dfrac{2\sqrt{2}+2}{\sqrt{2}+1}=2\)

a )

Để biểu thức được xác định thì :

\(\left\{{}\begin{matrix}\sqrt{x+1}>0\\\sqrt{x-1}\ge0\end{matrix}\right.\Leftrightarrow x\ge1\)

b )

Để biểu thức được xác định thì :

\(\sqrt{x^2}-1>0\Leftrightarrow x>1\)

Chúc bạn học tốt !

11 tháng 10 2018

Ta có A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) với x≥ 9, x ∈ R

Để A > 0 \(\Leftrightarrow\) \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) > 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-2< 0\\\sqrt{x}+1>0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}< -1\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 2\\\sqrt{x}>-1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>4\\x< 1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 4\\x>1\end{matrix}\right.\end{matrix}\right.\)

Kết hợp với ĐKXĐ\(\Rightarrow\) x ∈ ∅

11 tháng 10 2018

ĐKXĐ: x≥9, x∈R

Ta có:

A= \(\left[\dfrac{1+\sqrt{x}-\sqrt{x}}{1+\sqrt{x}}\right]\):\(\left[\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{x-2\sqrt{x}-3\sqrt{x}+6}\right]\)

= \(\left[\dfrac{1}{1+\sqrt{x}}\right]\):\(\left[\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

=\(\left[\dfrac{1}{1+\sqrt{x}}\right]\):\(\left[\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

=\(\left[\dfrac{1}{1+\sqrt{x}}\right]\):\(\left[\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

=\(\dfrac{1}{1+\sqrt{x}}\):\(\dfrac{1}{\sqrt{x}-2}\)

=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

10 tháng 12 2023

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)

a: \(A=\dfrac{1}{\sqrt{x}-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}+1-x-2-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{-2x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

Để A>0 thì \(\dfrac{-2x+\sqrt{x}}{\sqrt{x}-1}>0\)

=>\(\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}< 0\)

=>1/2<căn x<1

=>1/4<x<1

b: \(B=\dfrac{2}{A}+\sqrt{x}\)

\(=\dfrac{2\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{-2x+\sqrt{x}}+\sqrt{x}\)

\(=\dfrac{2\left(x\sqrt{x}-1\right)-2x\sqrt{x}+x}{-2x+\sqrt{x}}=\dfrac{x-2}{-2x+\sqrt{x}}=\dfrac{-\left(x-2\right)}{2x-\sqrt{x}}< =0\)

Dấu '=' xảy ra khi x=2