K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
25 tháng 1 2021

\(p>3\)nên \(p\)có dạng \(p=3k\pm1,\left(k\inℕ\right)\)

\(p^2+2015=\left(3k\pm1\right)^2+2015=9k^2\pm6k+2016⋮3\)

nên \(p^2+2015\)là hợp số. 

16 tháng 10 2018

Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.

=>p 2 có dạng 3k+1

=>p2+2019=3k+1+2019=3k+2020

Vì 3k chia hết cho 3

2020 chia hết cho 3

=> 3k+1+2019 chia hết cho 3

=>n2+2019 chia hết cho 3 nên nó là hợp số

16 tháng 10 2018

ở câu cuối sai cho mik xin lỗi 

=>p2+2019 chia hết cho 3 nên nó là hợp số

20 tháng 11 2015

P là SNT lớn hơn 3 nên P lẻ

Nên p2 lẻ => p2 + 2009 chẵn (p2 + 2009 > 2)

Vậy p2 + 2009 là hợp số (chia hết cho 2) 

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do

23 tháng 10 2016

hop so

23 tháng 10 2016

p là số nguyên tố <3=>p=2

22+2015=4+2015=2019 chia hết cho 3=>p2+2015 là hợp số 

18 tháng 2 2017

Vì p là số nguyên tố lớn hơn 3

=> p là số lẻ

=> p2 là số lẻ

Lại có 2015 là số lẻ

=> p2 + 2015 là số chẵn

Mà 1 số chẵn luôn chia hết cho 2

=> p2 + 2015 chia hết cho 2

Mà 1<2<p2+2015

=> p2 + 2015 là hợp số

Vậy p2 là hợp số với p là số nguyên tố lớn hơn 3.

17 tháng 2 2017

là hợp số

30 tháng 10 2015

p  là số nguyên tố > 3 

=> p =3k+1 ; 3k+2

Xét p=3k+1 

=> p2+2015

= (3k+1)(3k+1)+2015

= 3k(3k+1)+3k+1+2015

= 3k(3k+1)+3k+2016

Vì 3k(3k+1) ;  3k ; 2016 chia hết cho 3 

=> 3k(3k+1)+3k+2016 chia hết cho 3 

=> p2​+2015 là hợp số 

Xét p =3k+2 

=> p2+2015

= (3k+2)(3k+2) +2015

= 3k(3k+2)+2(3k+2)+2015

= 3k(3k+2)+6k+4+2015

= 3k(3k+2)+6k+2019

Vì 3k(3k+2); 6k ; 2019 chia hết cho 3 

=> 3k(3k+2)+6k+2019 chia hết cho 3 

=> p​2+2015 chia hết cho 3 

=> p2​+2015 là hợp số 

=> p2+2015 luôn là hợp số khi p là số nguyên tố > 3