Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P là SNT lớn hơn 3 nên P lẻ
Nên p2 lẻ => p2 + 2009 chẵn (p2 + 2009 > 2)
Vậy p2 + 2009 là hợp số (chia hết cho 2)
p là số nguyên tố <3=>p=2
22+2015=4+2015=2019 chia hết cho 3=>p2+2015 là hợp số
Vì p là số nguyên tố lớn hơn 3
=> p là số lẻ
=> p2 là số lẻ
Lại có 2015 là số lẻ
=> p2 + 2015 là số chẵn
Mà 1 số chẵn luôn chia hết cho 2
=> p2 + 2015 chia hết cho 2
Mà 1<2<p2+2015
=> p2 + 2015 là hợp số
Vậy p2 là hợp số với p là số nguyên tố lớn hơn 3.
p là số nguyên tố > 3
=> p =3k+1 ; 3k+2
Xét p=3k+1
=> p2+2015
= (3k+1)(3k+1)+2015
= 3k(3k+1)+3k+1+2015
= 3k(3k+1)+3k+2016
Vì 3k(3k+1) ; 3k ; 2016 chia hết cho 3
=> 3k(3k+1)+3k+2016 chia hết cho 3
=> p2+2015 là hợp số
Xét p =3k+2
=> p2+2015
= (3k+2)(3k+2) +2015
= 3k(3k+2)+2(3k+2)+2015
= 3k(3k+2)+6k+4+2015
= 3k(3k+2)+6k+2019
Vì 3k(3k+2); 6k ; 2019 chia hết cho 3
=> 3k(3k+2)+6k+2019 chia hết cho 3
=> p2+2015 chia hết cho 3
=> p2+2015 là hợp số
=> p2+2015 luôn là hợp số khi p là số nguyên tố > 3
\(p>3\)nên \(p\)có dạng \(p=3k\pm1,\left(k\inℕ\right)\)
\(p^2+2015=\left(3k\pm1\right)^2+2015=9k^2\pm6k+2016⋮3\)
nên \(p^2+2015\)là hợp số.