K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔOBC cân tại O

mà OA là đường cao

nên OA là phân giác của góc BOC

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OBA}=\widehat{OCA}=90^0\)

=>AC là tiếp tuyến của (O;R)

b: \(\widehat{MOA}+\widehat{COA}=\widehat{MOC}=90^0\)

\(\widehat{MAO}+\widehat{BOA}=90^0\)(ΔBAO vuông tại B)

mà \(\widehat{COA}=\widehat{BOA}\)

nên \(\widehat{MOA}=\widehat{MAO}\)

=>ΔMAO cân tại M

 

24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

123 làm được rồi help mình câu 4

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

a: Xét ΔOBA và ΔOCA có 

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}\)

hay AC là tiếp tuyến của (O)

+ Ta có: AB là tiếp tuyến của (O)(gt)

nên AB\(\perp\)OB  

=> \(\Delta\)OBA vuông tại B(đpcm)

+ Xét \(\Delta\)OAK Có A1=A2  ( 1 ) (t/c 2 tiếp tuyến cắt nhau)

OK // AB => A1 = O1 ( 2 ) (so le trong)

Từ (1, 2) => (đpcm)

b, Xét \(\Delta\)AKO cân tại K (cmt)

IA = IO (=R)

=> KI là đường trung tuyến \(\Delta\)AKO

=> KI cũng là đường cao

=> KI\(\perp\)AO  hay KM \(\perp\)IO  

Vậy KM là tiếp tuyến của (O) (đpcm)

c, MI = MB ; KI = KC ; AB = AC ( t/c 2 tiếp tuyến cắt nhau )

Xét \(\Delta\)ABO vuông tại B (cmt) 

AD định lí Py ta go ta cs : 

AO2 =AB2  + OB2

AB2 = AO2 - OB2

AB2 = 4R2 - R2

AB = \(R\sqrt{3}\)

dễ rùi tự lm tiếp 

a: Xét ΔOBA và ΔOCA có 

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}\)

hay AC là tiếp tuyến của (O)

26 tháng 12 2021

a: \(AB=R\sqrt{3}\)