Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
a: Xét (O) có
MA,MB là các tiếp tuyên
nên MA=MB
mà OA=OB
nên OM là đường trung trực của AB
=>OM vuông góc với AB
b: Xét ΔOBM vuông tại B có BElà đường cao
nên OE*OM=OB^2=R^2 ko đổi
a, Theo tính chất của hai tiếp tuyến cắt nhau chứng minh được OM là đường trung trực của AB, tức OM vuông góc AB. Áp đụng hệ thức lượng trong tam giác vuông OAM chứng minh được : OI. OM = O A 2 = R 2
b, Chứng minh được: ∆OKI:∆OMH(g.g) => OK.OH = OI.OM
c, Để OAEB là hình thoi thì OA = EB. Khi đó, tam giác OAK đều, tức là
A
O
M
^
=
60
0
. Sử dụng tỉ số lượng giác của góc
A
O
M
^
, tính được OM=2OA=2R, tức là M cách O một khoảng 2R
d, Kết hợp ý a) và b) => OK.OH =
R
2
=> OK =
R
2
O
H
Mà độ dài OH không đổi nên độ dài OK không đổi
Do đó, điểm K là điểm cố định mà AB luôn đi qua khi M thay đổi
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')
a) theo tính chất của hai tiếp tuyến cắt nhau , ta có :
AM = MB
Mà OA = OB ( = R )
\(\Rightarrow\)OM thuộc đường trung trực của AB
\(\Rightarrow\)OM \(\perp\)AB
b) Áp dụng hệ thức lượng vào \(\Delta AOM\),ta có :
\(OE.OM=OA^2=R^2\) ( không đổi i)
c) gọi F là giao điểm của AB với OH
Xét \(\Delta OEF\)và \(\Delta OHM\)có :
\(\widehat{HOE}\left(chung\right)\); \(\widehat{OEF}=\widehat{OHM}\left(=90^o\right)\)
\(\Rightarrow\Delta OEF~\Delta OHM\left(g.g\right)\)
\(\Rightarrow\frac{OE}{OH}=\frac{OF}{OM}\Rightarrow OF.OH=OE.OM=R^2\Rightarrow OF=\frac{R^2}{OH}\)
Do đường thẳng d cho trước nên OH không đổi
\(\Rightarrow\)OF không đổi
Do đó đường thẳng AB luôn đi điểm F cố định