K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
a. Em tự giải
b.
Do tứ giác BDHM nội tiếp \(\Rightarrow\widehat{HDM}=\widehat{HBM}\) (cùng chắn cung HM)
Do tứ giác ABDE nội tiếp \(\Rightarrow\widehat{HBM}=\widehat{ADE}\) (cùng chắn cung AE)
\(\Rightarrow\widehat{HDM}=\widehat{ADE}\)
\(\Rightarrow DH\) là phân giác trong góc \(\widehat{EDK}\) của tam giác EDK
Lại có \(DH\perp DB\) (góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow DB\) là phân giác ngoài góc \(\widehat{EDK}\) của tam giác EDK
Áp dụng định lý phân giác:
\(\dfrac{EH}{HK}=\dfrac{EB}{BK}=\dfrac{ED}{DK}\) \(\Rightarrow BK.HE=BE.HK\)
c.
Hai điểm D và E cùng nhìn CH dưới 1 góc vuông nên tứ giác CDHE nội tiếp đường tròn đường kính CH
\(\Rightarrow I\) là trung điểm CH
Trong tam giác ABC, do hai đường cao AD và BE cắt nhau tại H \(\Rightarrow H\) là trực tâm
\(\Rightarrow CH\perp AB\) hay C;H;M thẳng hàng
Ta có \(IC=IE\) (do I là tâm đường tròn ngoại tiếp CDE) \(\Rightarrow\Delta CIE\) cân tại I
\(\Rightarrow\widehat{ECI}=\widehat{CEI}\)
Lại có \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O \(\Rightarrow\widehat{OBE}=\widehat{OEB}\)
Mà \(\widehat{OBE}=\widehat{ECI}\) (cùng phụ \(\widehat{BAC}\))
\(\Rightarrow\widehat{CEI}=\widehat{OEB}\)
\(\Rightarrow\widehat{CEI}+\widehat{IEB}=\widehat{OEB}+\widehat{IEB}\)
\(\Rightarrow\widehat{CEB}=\widehat{OEI}\)
\(\Rightarrow\widehat{OEI}=90^{ }\)
Hay \(OE\perp IE\Rightarrow IE\) là tiếp tuyến của đường tròn tâm O