Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu vi hình thang ABDC bằng: AB + 2CD (chứng minh trên)
Suy ra: 14 = 4 + 2.CD ⇒ CD = 5 (cm)
Hay CM + DM = 5 ⇒ DM = 5 – CM (1)
Tam giác COD vuông tại O có OM ⊥ CD
Theo hệ thức lượng trong tam giác vuông, ta có:
O M 2 = CM.DM ⇔ 2 2 = CM.DM ⇔ 4 = CM.DM (2)
Thay (1) vào (2) ta có: CM.(5 – CM) = 4
⇔ 5CM – C M 2 – 4 = 0 ⇔ 4CM – C M 2 + CM – 4 = 0
⇔ CM(4 – CM) + (CM – 4) = 0 ⇔ CM(4 – CM) – (4 – CM) = 0
⇔ (CM – 1)(4 – CM) = 0 ⇔ CM – 1 = 0 hoặc 4 – CM = 0
⇔ CM = 1 hoặc CM = 4
Vì CM = CA (chứng minh trên) nên AC = 1 (cm) hoặc AC = 4 (cm)
Vậy điểm C cách điểm A 1cm hoặc 4cm thì hình thang ABDC có chu vi bằng 14.
Bài này nhớ hôm trước làm rồi mà không nhớ ở câu nào nữa == , ngại tìm lại nên làm luôn :>
M I x C A O B D y
a) Ta có : OC , OD là các tia phân giác của 2 góc kề bù nên \(\widehat{COD}=90^o\) . Gọi I là trung điểm của CD tì :
IC = ID = IO
nên I là tâm và IO là bán kính của đường tròn có đường kính CD
b)
Chu vi hình thang ABDC bằng :
AB + AC + BD + CD
Ta dễ dàng chứng inh được :
AC + BD = CM + MD = CD
nên chu vi ABDC bằng AB + 2CD
Ta có AB không đổi nên chu vi ABDC nhỏ nhất và bằng 3AB .
c)
Đặt AC = x ; BD = y . Chu vi ABCD bằng :
AB + 2CD = 4 + 2( x + y )
Do chu vi ABDC bằng 14 nên :
4 + 2( x + y ) = 14
hay
x + y = 5 (1)
Ta lại có :
xy = MC . MD
= OM2 ( hệ thức lượng tam giác vuông COD )
nên xy = 22 = 4 (2)
Từ (1) , (2) suy ra :
\(x+\frac{4}{x}=5\Leftrightarrow x^2+4=5x\Leftrightarrow x^2-5x+4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\Leftrightarrow x=1;4\)
Vậy , nếu điểm C ( thuộc tia Ax ) cách điểm A là 1 cm hoặc 4 cm thì chu vi hình thang ABDC vẫn bằng 14cm
Theo tính chất hai tiếp tuyến cắt nhau ta có:
CA = CM
DB = DM
Suy ra: AC + BD = CM + DM = CD
Chu vi hình thang ABDC bằng: AB + BD + DC + CA = AB + 2CD
Vì đường kính AB của (O) không thay đổi nên chu vi hình thang nhỏ nhất khi CD nhỏ nhất
Ta có: CD ≥ AB nên CD nhỏ nhât khi và chỉ khi CD = AB
Khi đó CD // AB ⇔ OM ⊥ AB
Vậy khi M là giao điểm của đường thẳng vuông góc với AB tại O với nửa đường tròn (O) thì hình thang ABDC có chu vi nhỏ nhất.
A B C O M E F D
a, Theo tính chất 2 tiếp tuyến cắt nhau ta sẽ chứng minh được AM vuông góc với OC, MD vuông góc BD.
Mà \(\widehat{AMB}=90^o\)(góc nội tiếp chắn nửa đường tròn )
Vậy tứ giác OEMF là hình chữ nhật suy ra \(\widehat{COD}=90^O.\)
Trong tam giác vuông OCD, ta áp dụng hệ thức lượng suy ra: \(OM^2=CM.MD\Leftrightarrow R^2=CM.MD\).
Théo tính chât của tiếp tuyến bằng nhau ta có: CM = AC; MD = BD.
Vậy \(AC.BD=R^2.\)
b, Đặt CM = a. R; MD = b.R. Do \(R^2=MC.MD\Rightarrow a.b=1.\)
Áp dụng hệ thức lượng trong tam giác vuông : \(OC^2=CM.CD\Leftrightarrow OC^2=a.R.\left(a.R+b.R\right)\Leftrightarrow OC=R.\sqrt{a\left(a+b\right)}\)
Tương tự \(OD=R.\sqrt{b\left(a+b\right)}.\)
Vậy chu vi tam giác OCD bằng :
\(a.R+b.R+R.\sqrt{a\left(a+b\right)}+R.\sqrt{b\left(a+b\right)}\)
\(=R\left(a+b+\sqrt{a\left(a+b\right)}+\sqrt{b\left(a+b\right)}\right)\)ậy
Suy ra chu vi tam giác OCD min khi : \(a+b+\sqrt{a\left(a+b\right)}+\sqrt{b\left(a+b\right)}\)min.
Có: \(a+b+\sqrt{a\left(a+b\right)}+\sqrt{b\left(a+b\right)}=\sqrt{a+b}\left(\sqrt{a+b}+\sqrt{a}+\sqrt{b}\right)\)
\(=\sqrt{a+b}\left(\sqrt{a+b}+\sqrt{a+b+2}\right)\)
Do a.b = 1 nên a + b min khi a = b = 1 ( áp dụng BĐT cô - si).
Vây MIN \(\sqrt{a+b}\left(\sqrt{a+b}+\sqrt{a+b+2}\right)=\sqrt{2}\left(\sqrt{2}+2\right)=2.\left(\sqrt{2}+1\right)\).
Vậy chu vi tam giác OCD min khi M là trung điểm của CD hay M là trung điểm của cung AB>
\(P_{min}\Delta OCD=2\left(\sqrt{2}+1\right).R\).
qua dễ, lân sau nho hoi nhung bai toan hoc bua ban nhe.
A x B y M C D
a/ Vì DC, Ax, By là các tiếp của tiếp của đường tròn và cắt nhau tại các điểm tương ứng trên hình vẽ nên ta có
\(\hept{\begin{cases}AC=CM\\BD=MD\end{cases}}\) . Dễ dàng chứng minh góc COD = 90 độ
Áp dụng hệ thức về cạnh trong tam giác vuông , ta có \(MC.MD=OM^2\) hay \(AC.BD=R^2\)
b/ Ta có \(C_{OCD}=OC+OD+CD\) . Để chu vi tam giác OCD nhỏ nhất thì CD nhỏ nhất
Mà CM.MD = R2 không đổi nên CM+MD = CD đạt giá trị nhỏ nhất khi CM = MD
Khi đó M là điểm nằm giữa cung AB trên mặt phẳng chứa C và D.
cho tam giác ABC vuông tại A. Vẽ các đường tròn O và i đi qua A và tiếp xúc với BC tại các điểm B và C. Gọi M là trung điểm của BC. Chứng Minh
a) Các đường tròn O và i tiếp xúc với nhau
b) AM là tiếp tuyến chung của hai đường tròn O và i
c) tam giác OMI vuông
d) BC là tiếp tuyến của đường tròn ngoại tiếp tam giác OMI.