Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) OBNC có NCO=OBN=90 nên OBNC là tứ giác nội tiếp
b) Xét tam giác ADC có AB,DC là các đường cao
mà AB cắt DC tại O
suy ra O là trực tâm của tam giác ADC
nên NO vuông góc với AD
c)
CONB là tứ giác nôi tiếp nên COA=CNB
Xét tam giác ACO và tam giác DCN
COA=CNB(cmt)
ACO=NCD=90
nên tam giác ACO đồng dạng với tam giác DNC
nên CA.CN=CO.CD
Còn câu d mk chịu
1: ΔOAM cân tại O
mà OC là trung tuyến
nên OC vuông góc AM
góc OBN+góc OCN=180 độ
=>OCNB nội tiếp
2: Xét ΔACO vuông tại C và ΔABN vuông tại B có
góc CAO chung
=>ΔACO đồng dạng với ΔABN
=>AC/AB=AO/AN
=>AC*AN=AO*AB
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)
(Quá lực!!!)
E N A B C D O H L
Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.
Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).
Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.
Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).
-----
Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).
Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)