K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

Để A = n4 + 42k+1 là số nguyên tố <=> ƯC ( n4 ; 42k+1 ) = 1

=> n4 và 42k+1 chỉ có 1 ước nguyên dương

=> ( 4 + 1 )( 2k + 1 + 1 ) = 1

=> 5.( 2k + 2 ) = 1 => 10k + 10 = 1

=> 10k = - 9 => k = - 9/10

Theo đề , n và k là số tự nhiên

=> n ; k ∈ ∅

2 tháng 3 2016

Đinh Đức Hùng vậy khi n=1 và k=0

7 tháng 3 2016

Ta dựa vào nhận xét sau đây: Nếu \(p\) là số nguyên tố và \(p=ab\)  với a,b là các số nguyên dương thì a=1 hoặc b=1. Ta có

\(A=n^4+4\cdot2^{4k}=\left(n^2\right)^2+2\cdot n^2\cdot2^{2k+1}+\left(2^{2k+1}\right)^2-2^{2k+2}\cdot n^2\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2^{k+1}\cdot n\right)^2=\left(n^2+2^{2k+1}-2^{k+1}\cdot n\right)\left(n^2+2^{2k+1}+2^{k+1}n\right).\)

Vì A là số nguyên tố và \(n^2+2^{2k+1}-2^{k+1}\cdot n<\)\(n^2+2^{2k+1}+2^{k+1}\cdot n\).  Suy ra \(n^2+2^{2k+1}-2^{k+1}\cdot n=1\).  Suy ra  \(\left(n-2^k\right)^2+2^{2k}=1\to n=2^k,2^{2k}=1\to k=0,n=1.\)   Khi đó A=1+4=5 là số nguyên tố.

7 tháng 3 2016

^^ đang nghĩ

2 tháng 3 2016

Câu hỏi lớp 9 cậu đăng lên h.vn thì tốt hơn

2 tháng 3 2016

Minh Triều em nghĩ anh tìm các số nguyên tố là được. Tính cũng dễ hơn.

2 tháng 3 2016

đăng 1 cái là ok rồi đăng j lắm thế

Gợi ý: Áp dụng hằng đẳng thức a4+4b4=a4+4a2b2-(2ab)2=(a^2+2b^2-2ab)(a^2+2b^2+2ab)

thấy n^4+4^2k+1=n^4+4(2^k)^4 áp dụng hằng đẳng thức trên là xong

mà trong câu hỏi tương tự cũng có đó mặc dù ko có lời giải


 

14 tháng 6 2021

số đó là 1

17 tháng 7 2016

tìm số tự nhiên n và k sao cho A là số nguyên tố biết A=  n4 + 42k+1 

31 tháng 8 2019

đéo biết

NGUUYỄN NGỌC MINH viết sai đề rồi

23 tháng 5 2016

đồng ý cả hai tay

24 tháng 9 2020

\(B=n^5+n^4+1=n^5-n^2+n^4-n+n^2+n+1\)

\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1\)

\(=\left(n^2+n+1\right)\left(n^3-n+1\right)\)

+) Với \(n=0\Rightarrow B=1\)không là số nguyên tố (loại)

+) Với \(n=1\Rightarrow B=3\)là số nguyên tố(thỏa mãn)

+) Với \(n\ge2\left(n\in N\right)\Rightarrow n^3-n+1\ge n^2+n+1\ge7\)

Do đó B là hợp số

 Vậy n=1 là giá trị cần tìm.

24 tháng 9 2020

 Ta có:\(n^5+n^4+1=n^5+n^4+n^3-n^3+1\)

\(=n^3\left(n^2+n+1\right)-\left(n-1\right)\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(n^3-n-1\right)\)

Đk để là số nguyên tố thì:

\(n^2+n+1=1\)hoặc \(n^3-n-1=1\)

Xét \(n^2+n+1=1\Rightarrow n^2+n=0\Rightarrow\orbr{\begin{cases}n=1\left(tm\right)\\n=-1\left(ktm\right)\end{cases}}\)

Xét \(n^3-n+1=1\Rightarrow n^3-n=0\Rightarrow n\left(n^2-1\right)=0\)

                                                                \(\Rightarrow\orbr{\begin{cases}n=0\left(tm\right)\\\orbr{\begin{cases}n=1\left(tm\Rightarrow\right)\\n=-1\left(ktm\right)\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}n=0\left(tm\right)\\n=1\left(tm\right);n=-1\left(ktm\right)\end{cases}}\)

Tại \(n=0\Rightarrow A=1\left(ktm\right)\)Vì 1 không phải số ngto

Tại\(n=1\Rightarrow A=3\left(tm\right)\)vì 3 là số ngto

Vậy ...