Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(n+\left(n+1\right)>2\sqrt{n\left(n+1\right)}\left(AM-GM\right)\) suy ra:
\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{1}{\left(2n+1\right).\frac{\left(n+1\right)-n}{\sqrt{n+1}-\sqrt{n}}}=\frac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}< \frac{1}{2}.\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)Áp dụng vào ta có:
\(S_n< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{1}{2}-\frac{1}{2\sqrt{n+1}}< \frac{1}{2}\left(đpcm\right).\)
Bạn bấn vào đây, câu hỏi của bạn có người trả lời rồi Câu hỏi của Lương Ngọc Anh - Toán lớp 9 | Học trực tuyến
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2.n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}\)
\(\Rightarrow S_n=\frac{1}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}=1-\frac{\sqrt{n+1}}{n+1}\)
\(\Rightarrow S\left(n\right)\) hữu tỉ khi và chỉ khi \(\frac{\sqrt{n+1}}{n+1}=\frac{1}{\sqrt{n+1}}\) hữu tỉ
\(\Leftrightarrow\sqrt{n+1}\) hữu tỉ
\(\Leftrightarrow n+1=k^2\) với \(k\in Z\) ; \(k>1\)
\(\Rightarrow n=k^2-1\) với \(k\in Z;k>1\)
Vậy với mọi n có dạng \(n=k^2-1\) sao cho k là số nguyên lớn hơn 1 thì \(S\left(n\right)\) hữu tỉ
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng : \(a_1+a_2+a_3+...+a_{2016}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}\)
\(=1-\frac{1}{\sqrt{2017}}\)
với \(a>0,b>0\)ta có \(\sqrt{a}.\sqrt{b}\le\frac{a+b}{2}\Rightarrow\frac{1}{\sqrt{a}.\sqrt{b}}\ge\frac{2}{a+b}\)
từ đó ta có : \(\frac{1}{\sqrt{k\left(2016-k\right)}}\ge\frac{2}{k+2016-k}\ge\frac{2}{2016}=\frac{1}{1008},\)với mọi \(k\in N^{\cdot}\)
Suy ra \(S_k\)\(\ge k.\frac{1}{1008}>k.\frac{1}{1018}\)(đpcm).