K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

Gọi số nguyên tố >3 là a

Ta có:

a2+2015

Vi a​là số chính phương

2015 là hợp số

=>a2+2015 ko thể là số nguyên tố

Vậy a2+2015 ko phải là số ngyen tố

 

 

 

4 tháng 12 2015

Cộng vế với vế ta được

1999.( x1+x2 +.....+ x2000) = 1+2+3+....+ 2000

2 tháng 2 2019

Do n là số nguyên tố lớn hơn 3

=>n không chia hết cho 3

=>n=3k+1 hoặc a=3k+2   (k khác 0)

Xét n=3k+1

=>n^2+2015=9k^2+2+2015=9k^2+2017 (n không chia hết cho 3) (1)

Xét n=3k+2

=>n^2+2015=9k^2+4+2015=9k^2+2019 (n ko chia het cho 3)  (2)

(1)(2)=>n^2 là số nguyên tố

2 tháng 2 2019

Vì n > 3 nên n có dạng 3k+1 và 3k+2.

TH1: nếu n có dạng 3k+1 thì:

n^2+2015= (3k+1)^2+2015=(3k+1).(3k+1)+2015=(3k+1).3k+3k+1+2015=9k^2.3k+3k+2015

Vì 9k.3k chia hết cho 3

3k chia hết cho 3

2015 không chia hết 3

=> n^2+2015 là số nguyên tố.

TH2:nếu n có dạng 3k+2 thì:

n^2+2015=(3k+2)^2+2015=(3k+2).(3k+2)+2015=(3k+2).3k+(3k+2).2+2015=9k^2+6k+6k+4+2015=9k^2+12k+2019

Vì 9k^2 chia hết cho 3

12k chia hết cho3

2019 chia hết cho 3

=>n^2+2015 là hợp số

Vậy nếu n có dang 3k+1 thì n^2+2015 là số nguyên tố.

       nếu n có dạng 3k+2 thì n^2+2015 là hợp số.

k cho mk nha bạn

11 tháng 7 2016

Mình nghĩ đề bài của bạn có chút nhầm lẫn, 2006 chứ ko phải 2016 đâu

n là số nguyên tố, n>3

=>n=3k+1 hoặc n=3k+2 (k\(\in\)N)

+)Nếu n=3k+1

=>\(n^2+2006=\left(3k+1\right)^2+2006=9k^2+6k+1+2016=9k^2+6k+2007\) là hợp số

=>n2+2006 là hợp số

+)Nếu n=3k+2

=>\(n^2+2006=\left(3k+2\right)^2+2006=9k^2+12k+4+2006=9k^2+12k+2010\) là hợp số

=>n2+2006 là hợp số

Vậy với n là số nguyên tố, n>3 thì n2+2006 là hợp số

12 tháng 7 2016

n là số nguyên tố lớn hơn 3 nên ko chia hết cho 3 . Vậy n chia cho 3 dư 1 tức là n2 = 3k + 1

do đó n2 + 2006 = 3k + 1 + 2006 =  3k + 2007 chia hết cho 3 . 

Vậy n2 + 2006 là hợp số .

12 tháng 7 2016

                           Vì n > 3 nên có dạng 3k + 1 ; 3k + 2      (\(k\in N\))

                      TH1 : Với \(n=3k+1\)thì                                                                                                                                                                  \(n^2+2006=\left(3k+1\right)^2+2006=9k^2+1+2006=9k^2+2007\)

                              Vì 9k2 chia hết cho 3 mà 2007 cũng chia hết cho 3 nên \(9k^2+2007\)chia hết cho \(3\)

                    TH2 : Với \(n=3k+2\)thì

                              \(n^2+2006=\left(3k+2\right)^2+2006=9k^2+4+2006=9k^2+2010\)

                              Vì 9k2 chia hết cho 3 mà 2010 cũng chia hết cho 3 nên \(9k^2+2010\)chia hết \(3\)

                      Vậy với n > 3 thì \(n^2+2006\)là hợp số

                             Ủng hộ mk nha,thanks !!!

7 tháng 1 2016

n>3 =>n=3k+1=>(3k+1)(3k+1)+2015=>9k2+3k+3k+1+2015=>3(3k2+2k)+2016=>3(3k2+2k) và 2016 cùng chia hết cho 3 nên là hợp số 

Vì vậy: n2+2015 là hợp số

7 tháng 1 2016

-Vì n là số nguyên tố lớn 3  nên n có dạng 3k+1 và 3k+2 (k\(\in\)N*)

Với n =3k+1:

n2+2015=(3k+1)2+2015

             =(3k+1).(3k+1)+2015

             =3k(3k+1)+(3k+1)+2015

             =9k2+3k+3k+1+2015

            =9k2+6k+2016

Ta có:

9k2 chia hết cho 3

6k chia hết cho 3

2016 chia hết cho 3

=> 9k2+6k+2016 chia hết cho 3

Mà 9k2+6k+2016 > 3

=> 9k2+6k+2016 là hợp số 

=>n2+2015 là hợp số (1)

Với n=3k+2:

n2+2015=(3k+2)2+2015

             =(3k+2).(3k+2)+2015

             =3k(3k+2)+2(3k+2)+2015

             =9k2+6k+6k+4+2015

            =9k2+12k+2019

Ta có:

9k2 chia hết cho 3

12k chia hết cho 3

2019 chia hết cho 3

=> 9k2+12k+2019 chia hết cho 3

Mà 9k2+12k+2019 > 3

=> 9k2+12k+2019 là hợp số

=>n2+2015 là hợp số (2)

Từ (1) và (2) suy ra : n2+2015 là hợp số

Vậy n2+2015 là hợp số

nhớ tick ủng hộ mình !

           

31 tháng 1 2017

Số nguyên tố không bao gời là số chẵn ( trừ số 2 ) và lúc nào cũng là số lẻ

Số lẻ + Số lẻ = Số chẵn

=> n + 2015 là hợp số

31 tháng 1 2017

là hợp số nha!