Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt T là số nguyên thì 12n2 + 1 là số chính phương lẻ.
Đặt \(12n^2+1=\left(2k-1\right)^2,\left(k\in N\right)\)
\(\Leftrightarrow12n^2+1=4k^2-4k+1\)
\(\Leftrightarrow12n^2=4k^2-4k\)
\(\Leftrightarrow3n^2=k\left(k-1\right)\)
\(\Leftrightarrow k\left(k-1\right)⋮3\Rightarrow k⋮3;k-1⋮3\)
+) Nếu \(k⋮3\Rightarrow n^2=\left(\dfrac{k}{3}\right).\left(k-1\right)\). Mà \(\left(\dfrac{k}{3};k-1\right)=1\)nên đặt \(\dfrac{k}{3}=x^2\Rightarrow k=3x^2\)
Đặt \(k-1=y^2\Rightarrow k=y^2+1\)
\(\Rightarrow3x^2=y^2+1\equiv2\left(mod3\right)\)
Vô lý vì 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1.
+) Nếu \(k-1⋮3\)
\(\Rightarrow n^2=\dfrac{k.\left(k-1\right)}{3}\)mà \(\left(k;\dfrac{\left(k-1\right)}{3}\right)=1\)nên đặt k = z2 và \(\dfrac{\left(k-1\right)}{3}=t^2\)
\(\Rightarrow T=...=2+2\left(2k-1\right)=4k=4z^2=\left(2z^2\right)\)là 1 số chính phương
=> ĐPCM
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
Lời giải:
Để \(2+2\sqrt{12n^2+1}\in\mathbb{Z}\) thì \(12n^2+1\). phải là số chính phương lẻ.
Đặt \(12n^2+1=(2a+1)^2(a\in\mathbb{Z})\)
\(\Leftrightarrow 12n^2=4a^2+4a\Leftrightarrow 3n^2=a(a+1)\)
Vì \(a(a+1)=3n^2\vdots 3\) nên xét các TH sau:
TH1: \(a\vdots 3\). Đặt \(a=3k\)
Ta có: \(3n^2=a(a+1)=3k(3k+1)\)
\(\Leftrightarrow n^2=k(3k+1)\)
Dễ thấy $(k,3k+1)=1$ nên để tích của chúng là scp thì bản thân mỗi số đó là scp \(\Rightarrow \left\{\begin{matrix} k=u^2\\ 3k+1=v^2\end{matrix}\right.\) \((u,v\in\mathbb{Z})\)
\(\Rightarrow 2+2\sqrt{12n^2+1}=2+2(2a+1)=4a+4=4.3k+4\)
\(=4(v^2-1)+4=(2v)^2\) là số chính phương (đpcm)
TH2: \(a+1\vdots 3\). Đặt \(a+1=3k\)
\(\Rightarrow n^2=(3k-1)k\). Dễ thấy $(3k-1,k)=1$ nên \(\left\{\begin{matrix} k=u^2\\ 3k-1=v^2\end{matrix}\right.(u,v\in\mathbb{Z})\)
\(\Rightarrow 3u^2-1=v^2\)
\(\Rightarrow v^2\equiv 2\pmod 3\) (vô lý- loại)
Vậy..........