Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{n}{2n+1}=\frac{3\cdot n}{3\cdot\left(2n+1\right)}\)
\(=\frac{3n}{6n+3}\)
Đến đây so sánh tử số.
Có \(\frac{n}{2n+1}=\frac{3n}{3\left(2n+1\right)}=\frac{3n}{6n+3}\)
Xét 2 mẫu của phân số: \(6n+3=6n+3\)
Xét 2 tử số của hai phân số: \(3n+1>3n\)
\(\Rightarrow\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)(phân số nào cùng mẫu, có tử lớn hơn thì lớn hơn)
a) Ta có:
\(\frac{n+2}{2n+1}=\frac{1}{2}.\frac{2n+4}{2n+1}=\frac{1}{2}.\frac{2n+1+3}{2n+1}=\)
\(=\frac{1}{2}\left(1+\frac{3}{2n+1}\right)\)
\(\frac{n}{2n+3}=\frac{1}{2}.\frac{2n}{2n+3}=\frac{1}{2}.\frac{2n+3-3}{2n+3}\)
=\(\frac{1}{2}\left(1-\frac{3}{2n+3}\right)\)
Ta thấy: \(1+\frac{3}{2n+1}\)>1 và \(1-\frac{3}{2n+3}\)< 1 => \(\frac{1}{2}\left(1+\frac{3}{2n+1}\right)\)> \(\frac{1}{2}\left(1-\frac{3}{2n+3}\right)\)
=> \(\frac{n+2}{2n+1}\)> \(\frac{n}{2n+3}\)
b) Ta có:
\(\frac{n}{3n+1}=\frac{1}{3}.\frac{3n}{3n+1}=\frac{1}{3}.\frac{3n+1-1}{3n+1}=\)
= \(\frac{1}{3}.\left(1-\frac{1}{3n+1}\right)\)
\(\frac{2n}{6n+1}=\frac{1}{3}.\frac{6n}{6n+1}=\frac{1}{3}.\frac{6n+1-1}{6n+1}=\)
=\(\frac{1}{3}.\left(1-\frac{1}{6n+1}\right)\)
Ta thấy: \(\frac{1}{6n+1}< \frac{1}{3n+1}\)(Do 6n+1>3n+1)
=>\(\frac{1}{3}.\left(1-\frac{1}{6n+1}\right)\)> \(\frac{1}{3}.\left(1-\frac{1}{3n+1}\right)\)Hay \(\frac{2n}{6n+1}>\frac{n}{3n+1}\)
Ta có :
A = n / 2n + 1 = 3n / 3 ( 2n + 1 ) = 3n / 6n + 3
Vì 3n / 6n + 3 < 3n + 1/ 6n + 3 => A < B
Vậy A < B
\(2P=\frac{2n}{2n+1}=\frac{2n+1-1}{2n+1}=1-\frac{1}{2n+1}.\)
\(2Q=\frac{6n+2}{6n+3}=\frac{6n+3-1}{6n+3}=1-\frac{1}{6n+3}.\)
Nhận thấy: \(\frac{1}{2n+1}>\frac{1}{6n+3}\)
=> \(1-\frac{1}{6n+3}>1-\frac{1}{2n+1}\)
<=> 2Q > 2P
Hay Q > P
Cách làm:
Lấy cả 2 số nhận với 2 rồi so sánh phần bù tới 1.
Kết quả:P<Q.
tk mk nha các bn.
Mình mới lớp 5 nên không biết làm bài này.
Xin lỗi nha! Chúc bạn may mắn......mình chính là Đào Minh Tiến!
a) \(\frac{n}{n+1}\)và \(\frac{n+2}{n+3}\)
\(\frac{n}{n+1}=\frac{n\cdot\left(n+3\right)}{\left(n+1\right)\cdot\left(n+3\right)}\)
\(\frac{n+2}{n+3}=\frac{\left(n+2\right)\cdot\left(n+1\right)}{\left(n+3\right)\cdot\left(n+1\right)}\)
So sánh : \(n\cdot\left(n+3\right)\)và \(\left(n+2\right)\cdot\left(n+3\right)\)
\(n\cdot\left(n+3\right)=n^2+3n\)
\(\left(n+2\right)\cdot\left(n+3\right)=n^2+5n+6\)
\(n^2+3n< n^2+5n+6\)
\(\Leftrightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)
a, \(\frac{3n+5}{n+1}=\frac{3\left(n+1\right)+2}{n+1}=\frac{2}{n+1}\)
\(\Rightarrow n+1\in2=\left\{\pm1;\pm2\right\}\)
n + 1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
b, \(\frac{n+13}{n+1}=\frac{n+1+12}{n+1}=\frac{12}{n+1}\)
\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
c, \(\frac{3n+15}{n+1}=\frac{3\left(n+1\right)+12}{n+1}=\frac{12}{n+1}\)
\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
Bài 1: Gọi d=ƯCLN(3n+11;3n+2)
=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)
=>\(3n+11-3n-2⋮d\)
=>\(9⋮d\)
=>\(d\in\left\{1;3;9\right\}\)
mà 3n+2 không chia hết cho 3
nên d=1
=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau
Bài 2:
a:Sửa đề: \(n+15⋮n-6\)
=>\(n-6+21⋮n-6\)
=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)
mà n>=0
nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)
b: \(2n+15⋮2n+3\)
=>\(2n+3+12⋮2n+3\)
=>\(12⋮2n+3\)
=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)
mà n là số tự nhiên
nên n=0
c: \(6n+9⋮2n+1\)
=>\(6n+3+6⋮2n+1\)
=>\(2n+1\inƯ\left(6\right)\)
=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
a) Ta có: \(M=\frac{n}{3n+1}=\frac{2n}{2\left(3n+1\right)}=\frac{2n}{6n+2}\)
Vì n là số tự nhiên => 6n+2>6n+1
=> \(\frac{2n}{6n+1}>\frac{2n}{6n+2}\) hay N>M
Trl :
Bạn kia làm đúng rồi nhé !
Học tốt nhé bạn @