Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cứ hai đường thẳng không tính thứ tự thì sẽ có 1 giao điểm phân biệt với mọi giao điểm khác
nên ta có phương trình sau :
\(\frac{n\times\left(n-1\right)}{2}=780\Leftrightarrow\left(n-40\right)\left(n+39\right)=0\Leftrightarrow\orbr{\begin{cases}n=40\\n=-39\end{cases}}\)
mà n là số tự nhiên nên n =40 hay có 40 đường thẳng
Chọn một đường thẳng cắt n-1 đường thẳng còn lại ta được n-1 giao điểm
Làm tương tự với n-1 đường thẳng còn lại ta được tất cả : (n-1)xn giao điểm
Như vậy mỗi giao điểm đã được tính hai lần
Vây số đường thẳng thực có là:(n-1)xn:2(giao điểm)
Theo bài ta có 780 giao điểm
(n-1)xn:2=780
(n-1)xn=780x2=1560
Vì (n-1)xn là tích của hai số tự nhiên liên tiếp.Mà 1560=39x40
n=40
Vậy n=40
a làm tắt e tự trình bài nhé có j hỏi a
\(\dfrac{n.\left(n-1\right)}{2}=780\Leftrightarrow n\left(n-1\right)=1560=40.39\\ \Rightarrow n=40\)
um em có í kiến là mik chênh lệnh có 1,2 tuổi thì mik có thể xưng hô bạn bè được ko ạ
ta có qua hai điểm ta vẽ đươc 1 đường thẳng vậy qua 2006 ta vẽ được 2006 x 2005 đường thẳng vì có thể có các đường thẳng trùng nhau nên ta sẽ vẽ được 2006 x 2005 :2 đương thẳng