Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)n là số chính phương vì n có số ước lẻ
b)n chia hết cho 4 vì n chia hết cho 2(n có ước chẵn)
c)mình ko bt
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
11 là số nguyên tố, (16a+17b)(17a+16b) chia hết cho 11 => có ít nhất một thừa số chia hết cho 11, không giãm tính tính tổng quát, giả sử (16a+17b) chia hết cho 11
ta cm (17a+16b) cũng chia hết cho 11, thật vậy:
16a + 17b chia hết cho 11 => 2(16a + 17b) chia hết cho 11
=> 33(a+b) + b -a chia hết cho 11 => b-a chia hết cho 11
=> a-b chia hết cho 11
Ta có: 2(17a+16b) = 33(a+b) + a-b chia hết cho 11
do 2 và 11 là hai số nguyên tố => 17a+16b chia hết cho 11
Vậy (16a+17b)(17a+16b) chia hết cho 11.11 = 121 = 11^2 là scp => đpcm
Đề cho là (16a+17b) + (16b+17a) chia hết cho 11 chứ đâu phải là (16a+17b) . (16b+17a) chia hết cho 11
Gọi số phải tìm là n; số chính phương đó là a; gọi b là số tự nhiên mà n là lập phương của nó.
Ta thấy n chia hết cho 2 và 3 (vì số chính phương hay lập phương của một số tự nhiên đều là số tự nhiên) nên để n nhỏ nhất, ta chọn n = 2x.3y (x và y khác 0).
n : 2 = 2x.3y : 2 = 2x-1.3y = a2 suy ra x - 1 và y đều chia hết cho 2 hay đều là số chẵn.
n : 3 = 2x.3y : 3 = 2x.3y-1 = b3 suy ra x và y - 1 đều chia hết cho 3.
Từ x - 1 chia hết cho 2 và x chia hết cho 3, để nhỏ nhất ta chọn x = 3
Từ y chia hết cho 2 và y - 1 chia hết cho 3, để nhỏ nhất ta chọn y = 4
Vậy n = 23.34 = 648
Số cần tìm là 648.