Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n(n+1)()2n+1) = n(n+1)(n+2 + n - 1) = n(n+1)(n+2) + (n-1).n.(n+1)
n(n+1)(n+2) ; (n-1).n.(n+1) đều là tích của 3 số tự nhiên liên tiếp nên các tích đó chia hết 6
=> n(n+1)(n+2) + (n-1).n.(n+1) chia hết cho 6
=> n(n+1)()2n+1) chia hết cho 6
Ta có: 3n +8 chia hết cho n + 2 (1)
Mà: n+2 chia hết cho n + 2
=>3(n+2) chia hết cho n + 2
=>3n+6 chia hết cho n + 2 (2)
Từ (1) và (2) =>(3n+8)-(3n+6) chia hết cho n + 2
=>2 chia hết cho n + 2
=>n+2 thuộc Ư(2)
\(\Rightarrow n+2\in\left\{1;2\right\}\)
\(\Rightarrow n\in\left\{0\right\}\)
Vậy n=0
Tick cho mình đi !
Từ các chữ số 0,1,4,8, lập được bảo nhiêu số có ba chữ số chia hết cho 5
n3 + 11n = n3 - n + 12n = n(n2 - 1) + 12n= (n - 1)n(n + 1) + 12n
Vì n là số nguyên nên (n - 1)n(n + 1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6; mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6.
Vậy (n - 1)n(n + 1) + 12n chia hết cho 6 => n3 + 11n chia hết cho 6 (đpcm)
n 3 + 11n = n 3 ‐ n + 12n = n﴾n 2 ‐ 1﴿ + 12n= ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n
Vì n là số nguyên nên ﴾n ‐ 1﴿n﴾n + 1﴿ là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6
;mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6
Vậy ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n chia hết cho 6 => n 3 + 11n chia hết cho 6 ﴾đpcm﴿
Lời giải:
\(\frac{4}{m}-\frac{1}{n}=1\)
\(\frac{4\times n-m}{m\times n}=1\)
\(4\times n-m=m\times n\)
Vì $m\times n$ chia hết cho $n$ nên $4\times n-m$ chia hết cho $n$
Mà $4\times n$ chia hết cho $n$ nên $m$ chia hết cho $n$
Ta có điều phải chứng minh.