Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em thử ạ. Bài dài quá em chẳng biết có tính sai chỗ nào hay không nữa ;(
Từ giả thiết ta có:
\(\hept{\begin{cases}x+y=-\frac{2}{3}\left(z+1\right)\\xy=-\frac{1}{3}\end{cases}}\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy=\frac{4}{9}\left(z+1\right)^2+\frac{2}{3}\)
Và \(\left(x-y\right)^2=\left(x+y\right)^2-4xy=\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}\)
Ta có: \(A=\frac{\left(x-y\right)\left(x^2+xy+y^2\right)+\left(z+1\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)}{\left(x-y\right)^3}\)
\(=\frac{\left(x-y\right)\left(x^2+y^2-\frac{1}{3}\right)+\left(z+1\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)}{\left(x-y\right)^3}\)
\(=\frac{\left(x-y\right)\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\left(x-y\right)^3}\)
\(=\frac{\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\left(x-y\right)^2}\)
\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-\frac{2}{9}\left(z+1\right)^2+\frac{1}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)
\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-\frac{2}{9}\left(z+1\right)^2+\frac{1}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)
Ơ....hình như em tính sai chỗ nào rồi:(
Nguyễn Khang
\(A=\frac{\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)
\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2-1\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\) ( như này mới đúng, e thiếu -1 ở tử )
\(=\frac{\frac{-2}{9}\left(z+1\right)^2-\frac{2}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=-\frac{1}{2}.\frac{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-1}{2}\)
c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)
Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)
\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)
Đế C' nguyên thì a + 1 là ước của 1
\(\Rightarrow a=0\)
\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)
\(\Rightarrow x=\frac{9}{4}\left(l\right)\)
Vậy không có x.
Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks
a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)
\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)
\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)
\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)
\(=\frac{1}{3-2\sqrt{x}}\)
Câu b, c tự làm nhé
vt mỗi cái đề cho người khác lm
haazzzzzzzzzzzzzzz
chi kute
Áp dụng BĐT AM - GM:
\(\frac{3}{2}\ge a+b+c\ge3\sqrt[3]{abc}\) \(\Rightarrow abc\le\frac{1}{8}\)
\(1+1+1+\frac{1}{2a}+\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2b}\ge7\sqrt[7]{\frac{1}{16a^2b^2}}\)
\(\Leftrightarrow3+\frac{1}{a}+\frac{1}{b}\ge7\sqrt[7]{\frac{1}{16a^2b^2}}\)
Tương tự ta CM được:
\(3+\frac{1}{b}+\frac{1}{c}\ge7\sqrt[7]{\frac{1}{16b^2c^2}}\)
\(3+\frac{1}{c}+\frac{1}{a}\ge\ge7\sqrt[7]{\frac{1}{16c^2a^2}}\)
Nhân vế theo vế 3 bất đẳng thức trên:
\(S\ge343\sqrt[7]{\frac{1}{4096a^4b^4c^4}}\ge343\sqrt[7]{\frac{1}{4096.\frac{1}{8^4}}}=343\)
\(\Rightarrow Min_S=343\Leftrightarrow a=b=c=\frac{1}{2}\)
\(\frac{c+1}{c+3}\ge\frac{1}{a+2}+\frac{3}{b+4}\ge2\sqrt[]{\frac{3}{\left(a+2\right)\left(b+4\right)}}\) (1)
\(\frac{1}{a+2}+\frac{3}{b+4}\le\frac{c+3-2}{c+3}=1-\frac{2}{c+3}\Rightarrow1-\frac{1}{a+2}\ge\frac{3}{b+4}+\frac{2}{c+3}\)
\(\Rightarrow\frac{a+1}{a+2}\ge\frac{3}{b+4}+\frac{2}{c+3}\ge2\sqrt{\frac{6}{\left(b+4\right)\left(c+3\right)}}\) (2)
\(\frac{1}{a+2}+\frac{3}{b+4}\le1-\frac{2}{c+3}\Rightarrow1-\frac{3}{b+4}\ge\frac{1}{a+2}+\frac{2}{c+3}\)
\(\Rightarrow\frac{b+1}{b+4}\ge\frac{1}{a+2}+\frac{2}{c+3}\ge2\sqrt{\frac{2}{\left(a+2\right)\left(c+3\right)}}\) (3)
Nhân vế với vế (1);(2);(3):
\(\frac{\left(a+1\right)\left(b+1\right)\left(c+1\right)}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\ge8\sqrt{\frac{36}{\left(a+2\right)^2\left(b+4\right)^2\left(c+3\right)^2}}=\frac{48}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\)
\(\Rightarrow Q\ge48\Rightarrow Q_{min}=48\) khi \(\left(a;b;c\right)=\left(1;5;3\right)\)
a) \(\frac{\sqrt{640}\sqrt{34,3}}{\sqrt{567}}\)
\(= \frac{\sqrt{64.10}\sqrt{49.\frac{7}{10}}}{\sqrt{81.7}}\)
\(= \frac{\sqrt{64}\sqrt{10}\sqrt{49}\sqrt{\frac{7}{10}}}{\sqrt{81}\sqrt{7}}\)
\(= \frac{\sqrt{64}\sqrt{49}}{\sqrt{81}} . \frac{\sqrt{10}\sqrt{\frac{7}{10}}}{\sqrt{7}}\)
\(= \frac{8.7}{9} . \frac{\sqrt{10 . \frac{7}{10}}}{\sqrt{7}}\)
\(= \frac{56}{9} . \frac{\sqrt{7}}{\sqrt{7}}\)
\(= \frac{56}{9} . 1 = \frac{56}{9}\)
b) \(\sqrt{21,6}\sqrt{810}\sqrt{11^2−5^2}\)
\(= \sqrt{216.\frac{1}{10}}\sqrt{81.10}\sqrt{(11−5)(11+5)}\)
\(= \sqrt{36.6.\frac{1}{10}}\sqrt{81}\sqrt{10}\sqrt{6.16}\)
\(= \sqrt{36}\sqrt{6}\sqrt{\frac{1}{10}}\sqrt{81}\sqrt{10}\sqrt{6}\sqrt{16}\)
\(= (\sqrt{36}\sqrt{81}\sqrt{16}).(\sqrt{6}\sqrt{6}).(\sqrt{\frac{1}{10}}\sqrt{10})\)
\(= (6.9.4).\sqrt{6.6}.\sqrt{\frac{1}{10}.10}\)
\(= (54.4).\sqrt{36}.\sqrt{1}\)
\(= 216.6.1 = 1296\)
Do m, n cùng dấu, m, n khác 0 nên m, n cùng âm hoặc cùng dương, mà nếu m, n cùng âm thì \(\frac{1}{2m}+\frac{1}{n}< 0< \frac{1}{3}\)
trái với gt \(\Rightarrow\) m, n cùng dương
\(\frac{1}{3}=\frac{1}{2m}+\frac{1}{n}\ge2\sqrt{\frac{1}{2mn}}\)\(\Leftrightarrow\)\(\frac{1}{2mn}\le\frac{1}{36}\)\(\Leftrightarrow\)\(mn\ge18\)\(\Rightarrow\)\(B\ge18\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{2m}=\frac{1}{n}\\\frac{1}{2m}+\frac{1}{n}=\frac{1}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}m=3\\n=6\end{cases}}}\)