K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2021

                   Cho hàm số ham-so

Tính ham-so

14 tháng 6 2017

a, Đặt \(A=\left(2t^2-5t+1\right)-\left(t^2+3t+1\right)\)

\(=2t^2-5t+1-t^2-3t-1\)

\(=t^2-8t\)

Ta có: \(t^2-8t=0\)

\(\Leftrightarrow t\left(t-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=0\\t=8\end{matrix}\right.\)

Vậy t = 0 hoặc t = 8 là nghiệm của A

b, Đặt \(B=\left(3t^2-2t+1\right)-\left(3t^2-2t+5\right)\)

\(=3t^2-2t+1-3t^2+2t-5\)

\(=-4\)

\(\Rightarrow\)B vô nghiệm vì giá trị của B không phụ thuộc vào t

Vậy đa thức B vô nghiệm

14 tháng 6 2017

a) Ta có: \(\left(2t^2-5t+1\right)-\left(t^2+3t+1\right)\)

\(=2t^2-5t+1-t^2-3t-1=t^2-8t\)

Xét \(t^2-8t=0\) hay \(t\left(t-8\right)=0\) ta được hai nghiệm là \(t_1=0,t_2=8\)

b) \(\left(3t^2-2t+1\right)-\left(3t^2-2t+5\right)\)

\(=3t^2-2t+1-3t^2+2t-5=-4\)

Rõ ràng ( - 4 ) không thể = 0 nên đa thức này không có nghiệm. Nó là đa thức bậc 0 ( vì -4 = -4t0 )

\(\frac{2x}{5}=\frac{3y}{8}=\frac{5t}{3}\)và \(x-2y+3t=-279\)

Thgeo bài ra ta cs 

\(\frac{x}{10}=\frac{y}{24}=\frac{t}{15}\)và \(x-2y+3t=-279\)

ADTC dãy tỉ số bằng nhau ta cs

\(\frac{x}{10}=\frac{y}{24}=\frac{t}{15}=\frac{x-2y+3t}{10-2.24+3.15}=-\frac{279}{7}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=-\frac{279}{7}\\\frac{y}{25}=-\frac{279}{7}\\\frac{t}{15}=-\frac{279}{7}\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{2790}{7}\\y=-\frac{69750}{7}\\t=\frac{-1046250}{7}\end{cases}}}\)

31 tháng 7 2018

1/ Đặt: \(\dfrac{x}{2}=\dfrac{2y}{3}=\dfrac{3t}{4}=k\)

=> \(x=2k;y=\dfrac{3k}{2};t=\dfrac{4k}{3}\)

=> \(xyt=2k\cdot\dfrac{3k}{2}\cdot\dfrac{4k}{3}=4k^3=-108\)

=> \(k^3=-27\Rightarrow k=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-3\right)=-6\\y=\dfrac{3k}{2}=\dfrac{3\cdot\left(-3\right)}{2}=-\dfrac{9}{2}\\t=\dfrac{4k}{3}=\dfrac{4\cdot\left(-3\right)}{3}=-4\end{matrix}\right.\)

Vậy ...........

2/ Sửa đề: 3x + 5y+7t = 123

Ta có: \(\dfrac{x}{2}=\dfrac{2y}{5}=\dfrac{4t}{7}\)

\(\Rightarrow\dfrac{3x}{6}=\dfrac{5y}{12,5}=\dfrac{7t}{12,25}\)

A/dung t/c của dãy tỉ số bằng nhau ta có:

\(\dfrac{3x}{6}=\dfrac{5y}{12,5}=\dfrac{7t}{12,25}=\dfrac{3x+5y+7t}{6+12,5+12,25}=\dfrac{123}{30,75}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4\cdot6}{3}=8\\y=\dfrac{4\cdot12,5}{5}=10\\t=\dfrac{4\cdot12,25}{7}=7\end{matrix}\right.\)

Vậy............

2 tháng 8 2018

Thanks bạn

Bài 4:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)

\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)

Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)

Bài 2:

a: x:y=4:7

=>\(\dfrac{x}{4}=\dfrac{y}{7}\)

mà x+y=44

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)

=>\(x=4\cdot4=16;y=4\cdot7=28\)

b: \(\dfrac{x}{2}=\dfrac{y}{5}\)

mà x+y=28

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)

=>\(x=4\cdot2=8;y=4\cdot5=20\)

Bài 3:

Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)

=>x=5k; y=4k; z=3k

\(M=\dfrac{x+2y-3z}{x-2y+3z}\)

\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)

\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)

23 tháng 1 2024

bài 1 đâu hả bạn 

 

Bài 1:

Ta có: x:y:z:t=15:7:3:1

\(\Rightarrow\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\)

Ta lại có: x-y+z-t=10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)

Do đó:

\(\left\{{}\begin{matrix}\frac{x}{15}=1\\\frac{y}{7}=1\\\frac{z}{3}=1\\\frac{t}{1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=7\\z=3\\t=1\end{matrix}\right.\)

Vậy: (x,y,z,t)=(15;7;3;1)

Bài 2:

Gọi các phần cần tìm lần lượt là a,b,c,d

Theo đề bài, ta có:

a,b,c,d lần lượt tỉ lệ với 3;5;7;9

\(\Leftrightarrow\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}\)

và a+b+c+d=12

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}=\frac{a+b+c+d}{3+5+7+9}=\frac{12}{24}=\frac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\frac{a}{3}=\frac{1}{2}\\\frac{b}{5}=\frac{1}{2}\\\frac{c}{7}=\frac{1}{2}\\\frac{d}{9}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1,5\\b=2,5\\c=3,5\\d=4,5\end{matrix}\right.\)

Vậy: bốn phần cần tìm là 1,5; 2,5; 3,5 và 4,5

Bài 3:

Ta có: 2a=3b

\(\Leftrightarrow\frac{a}{3}=\frac{b}{2}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)(1)

Ta có: 5b=7c

\(\Leftrightarrow\frac{b}{7}=\frac{c}{5}\)

\(\Leftrightarrow\frac{b}{14}=\frac{c}{10}\)(2)

Từ (1) và (2) suy ra \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

\(\Leftrightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

Ta có: 3a+5c-7b=30

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)

Do đó:

\(\left\{{}\begin{matrix}\frac{3a}{63}=2\\\frac{7b}{98}=2\\\frac{5c}{50}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=126\\7b=196\\5c=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=42\\b=28\\c=20\end{matrix}\right.\)

Vậy: (a,b,c)=(42;28;20)

27 tháng 9 2015

ta co :ghi lai de

 \(\frac{x}{3}=\frac{y}{4}=\frac{t}{5}\Rightarrow\frac{2x^2}{36}=\frac{2y^2}{64}=\frac{3t^2}{225}\)

Áp dụng tính chất dãy tỉ số bằng nhau 

\(\frac{2x^2}{36}=\frac{2y^2}{64}=\frac{3t^2}{225}=\frac{2x^2+2y^2-3t^2}{36+64-225}=\frac{-1}{-125}=\)

tu tih tiep nhe