K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

Giải bài 1 trang 34 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 1 trang 34 sgk Hình học 11 | Để học tốt Toán 11

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

a) Phép quay tâm O góc \(120^0\) biến F, A, B lần lượt thành B, C, D; Biến trung điểm I của AB thành trung điểm J của CD. Nên biến tam giác AIF thành tam giác CJB

b) Phép quay tâm E góc \(60^0\) biến A, O, F lần lượt thành C, D, O

4 tháng 4 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Phép quay tâm O góc 120 ο  biến F, A, B lần lượt thành B, C, D; biến trung điểm I của AB thành trung điểm J của CD. Nên nó biến tam giác AIF thành tam giác CJB.

b) Phép quay tâm E góc 60 ο  biến A, O, F lần lượt thành C, D, O.

31 tháng 3 2017

Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên

a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0

b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :

=

hay 3x - y - 1 =0

c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0

d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình

=

hay x - 3y + 1 = 0

31 tháng 3 2017

Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên

a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0

b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :

=

hay 3x - y - 1 =0

c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0

d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình

=

hay x - 3y + 1 = 0

29 tháng 1 2017

Ta có: A(-1; 2) ∈ (d): 3x + y + 1 = 0.

Giải bài 2 trang 34 sgk Hình học 11 | Để học tốt Toán 11

⇒ (d’): 3x + y – 6 = 0.

b. ĐOy (A) = A1 (1 ; 2)

Lấy B(0 ; -1) ∈ d

Ảnh của B qua phép đối xứng trục Oy: ĐOy (B) = B(0; -1) (vì B ∈ Oy).

⇒ d1 = ĐOy (d) chính là đường thẳng A1B.

⇒ d1: 3x – y – 1 = 0.

c. Phép đối xứng tâm O biến A thành A2(1; -2).

d2 là ảnh của d qua phép đối xứng tâm O

⇒ d2 // d và d2 đi qua A2(1 ; -2)

⇒ (d2): 3x + y – 1 = 0.

d. Gọi M(-1; 0) và N(0; 2) lần lượt là hình chiếu của A(-1; 2) trên Ox, Oy.

Q(O;90º) biến N thành N’(-2; 0), biến A thành A’, biến M thành B(0; -1).

Vậy Q(O;90º) biến hình chữ nhật ONAM thành hình chữ nhật ON’A’B. Do đó A’(-2; -1) đi qua A và B, Q(O;90º) biến A thành A’(-2; -1) biến B thành B’(1; 0)

Vậy Q(O;90º) biến d thành d’ qua hai điểm A’, B’

Do đó phương trình d’ là :

Giải bài 2 trang 34 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

undefined

- Dựng hình bình hành ABB'G và ACC'G. Khi đó ta có: \(\overrightarrow{AG}=\overrightarrow{BB'}=\overrightarrow{CC'}\)

. Suy ra \(^T\overrightarrow{AG}\left(A\right)=G,^T\overrightarrow{AG}\left(B\right)=B',^T\overrightarrow{AG}\left(C\right)=C'\)

Do đó ảnh của tam giác ABC qua phép tịnh tiến theo vectơ \(\overrightarrow{AG}\) là tam giác GB'C'.

- Trên tia GA lấy điểm D sao cho A là trung điểm của GD. Khi đó ta có \(\overrightarrow{DA}=\overrightarrow{AG}\). Do đó, \(^T\overrightarrow{AG}\left(D\right)=A\).

31 tháng 3 2017

undefined

- Dựng hình bình hành ABB'G và ACC'G. Khi đó ta có: −−→AG=−−→BB′=−−→CC′AG→=BB′→=CC′→

. Suy ra T−−→AG(A)=G,T−−→AG(B)=B′,T−−→AG(C)=C′TAG→(A)=G,TAG→(B)=B′,TAG→(C)=C′

Do đó ảnh của tam giác ABC qua phép tịnh tiến theo vectơ −−→AGAG→ là tam giác GB'C'.

- Trên tia GA lấy điểm D sao cho A là trung điểm của GD. Khi đó ta có −−→DA=−−→AGDA→=AG→. Do đó, T−−→AG(D)=ATAG→(D)=A.

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

31 tháng 3 2017

Lấy M tùy ý. Gọi {D_{d}}^{}(M) = M', {D_{d'}}^{} (M') = M''. Ta có
\(\overrightarrow{MM'}=\overrightarrow{MM'}+\overrightarrow{M'M''}=2\overrightarrow{M_oM'}+2\overrightarrow{M'M_1}=2\overrightarrow{M_oM_1}\)\(=2\dfrac{\overrightarrow{v}}{2}=\overrightarrow{v}\).

Vậy M'' = (M) = {D_{d'}}^{} ({D_{d}}^{}(M)), với mọi M

Do đó phép tịnh tiến theo vectơ v là kết quả của việc thực hiện liên tiếp phép đối xứng qua các đường thẳng d và d'.