Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H�nh ?a gi�c TenDaGiac1: DaGiac[E, D, 6] ?o?n th?ng f: ?o?n th?ng [E, D] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng g: ?o?n th?ng [D, C] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng h: ?o?n th?ng [C, B] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng i: ?o?n th?ng [B, A] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng j: ?o?n th?ng [A, F] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng k: ?o?n th?ng [F, E] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng l: ?o?n th?ng [B, N] ?o?n th?ng m: ?o?n th?ng [A, M] ?o?n th?ng q: ?o?n th?ng [A, D] ?o?n th?ng r: ?o?n th?ng [A, N] ?o?n th?ng s: ?o?n th?ng [O, N] ?o?n th?ng t: ?o?n th?ng [I, D] ?o?n th?ng a: ?o?n th?ng [O, I] ?o?n th?ng b: ?o?n th?ng [M, O] E = (-1.3, 1.4) E = (-1.3, 1.4) E = (-1.3, 1.4) D = (2.28, 1.44) D = (2.28, 1.44) D = (2.28, 1.44) ?i?m C: DaGiac[E, D, 6] ?i?m C: DaGiac[E, D, 6] ?i?m C: DaGiac[E, D, 6] ?i?m B: DaGiac[E, D, 6] ?i?m B: DaGiac[E, D, 6] ?i?m B: DaGiac[E, D, 6] ?i?m A: DaGiac[E, D, 6] ?i?m A: DaGiac[E, D, 6] ?i?m A: DaGiac[E, D, 6] ?i?m F: DaGiac[E, D, 6] ?i?m F: DaGiac[E, D, 6] ?i?m F: DaGiac[E, D, 6] ?i?m M: Trung ?i?m c?a g ?i?m M: Trung ?i?m c?a g ?i?m M: Trung ?i?m c?a g ?i?m N: Trung ?i?m c?a f ?i?m N: Trung ?i?m c?a f ?i?m N: Trung ?i?m c?a f ?i?m I: Giao ?i?m c?a l, m ?i?m I: Giao ?i?m c?a l, m ?i?m I: Giao ?i?m c?a l, m ?i?m O: Giao ?i?m c?a n, p ?i?m O: Giao ?i?m c?a n, p ?i?m O: Giao ?i?m c?a n, p
a. Ta thấy \(\Delta ABC=\Delta BCD\left(c-g-c\right)\Rightarrow AC=BD;\widehat{ACB}=\widehat{BDC}\)
\(\Rightarrow\widehat{ACM}=\widehat{BDN}\Rightarrow\Delta AMC=\Delta BND\left(c-g-c\right)\)
\(\Rightarrow\widehat{AMC}=\widehat{BND}\Rightarrow\widehat{AMC}+\widehat{AMD}=\widehat{BND}+\widehat{AMD}=180^o\)
\(\Rightarrow\widehat{NIM}+\widehat{NDM}=180^o\Rightarrow\widehat{AIB}=180^o-120^o=60^o.\)
b. Ta thấy ON vuông góc ED nên ON cũng vuông góc AB. Lại có tam giác ANB cân tại N; NO là đường cao nên nó là phân giác. Vậy \(\widehat{ANO}=\widehat{BNO}\)
Lại có AD là trung trực MN nên \(\widehat{ANO}=\widehat{AMO}\Rightarrow\widehat{BNO}=\widehat{AMO}\Rightarrow\) tứ giác OIMN nội tiếp.
Lại dễ thấy OMDN cũng nội tiếp nên O; I; M ;D; N cùng thuộc đường trong đường kính OD. Vậy \(\widehat{OID}=90^o.\)
(Cô làm theo cách lớp 9)
em gửi bài qua fb thầy chữa cho nhé, tìm fb của thầy bằng sđt: 0975705122 nhé.
Giải
Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\) là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì
\(MI=KN=\frac{DE}{2}\left(1\right)\)
\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)
\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)
\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD