\(cho\frac{a}{b}< \frac{c}{d}\left(a,b,c,d\varepsilon Z;b,d\ne0\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019
Theo ví dụ trên,ta có a/b < c/d => ad < bc. Suy ra: <=> ad + ab < bc + ba <=> a(b+d) < b(a+c) <=> a/b < (a+c)/(b+d). Mặt khác ad < bc => ad +cd < bc + cd <=> d(a+c) < (b+d)c <=> (a+c)/(b+d) < c/d. Vâỵ : ....
28 tháng 7 2016

bạn áp dụng dãy tỉ số bằng nhau là xong

28 tháng 7 2016

1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)

-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)

2) ta có \(\frac{a}{b}=\frac{c}{d}\)

đặt a=kb và c=kd

\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

21 tháng 9 2017

Đinh Ngọc Trang 

Ta có:

\(a:b=c:d\)nên suy ra \(a:c=b:d\)

Nhờ đó mà ta có:

\(a:c=b:d\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

21 tháng 9 2017

Ta co a/b=k=>a=kb

c/d=k=>c=kd

a+b/a-b=kb+b/kb-b=k(b+1)/k(b-1)=b+1/b-1

Tuong tu ta co c+d/c-d=d+1/d-1

Vi a/b=c/d=>b=d=>b+1/b-1=c+1/c-1

5 tháng 6 2019

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

+) \(ad+ab< bc+ab\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )

+) \(ad+cd< bc+cd\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

5 tháng 6 2019

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)

 Vì \(b,d>0\Rightarrow bd>0\)

\(\Rightarrow ad< bc\)

Ta lại có:

\(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)

\(\frac{a+c}{b+d}=\frac{b\left(a+c\right)}{b\left(b+d\right)}=\frac{ab+bc}{b\left(b+d\right)}\)

Vì \(b,d>0\)

Nên \(b\left(b+d\right)>0\)và \(d\left(b+d\right)>0\)         \(\left(1\right)\)

Mà \(ad< bc\Leftrightarrow ab+ad< ab+bc\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)ta có: \(\frac{ab+ad}{b\left(b+d\right)}>\frac{ab+bc}{b\left(b+d\right)}\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(\cdot\right)\)

Ta lại có:

\(\frac{a+c}{b+d}=\frac{d\left(a+c\right)}{d\left(b+d\right)}=\frac{ad+cd}{d\left(b+d\right)}\)

\(\frac{c}{d}=\frac{c\left(b+d\right)}{d\left(b+d\right)}=\frac{bc+cd}{d\left(b+d\right)}\)

Mà \(ad< bc\Rightarrow ad+cd< bc+cd\left(3\right)\)

Từ \(\left(1\right)\)và \(\left(3\right)\)ta có:

\(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(\cdot\cdot\right)\)

Từ \(\left(\cdot\right)\)và \(\left(\cdot\cdot\right)\)ta có: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

25 tháng 10 2017

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)

\(\Rightarrow ab+ad< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )

Lại có : ad < bc

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

14 tháng 6 2017

Vì \(\frac{a}{b}< \frac{c}{d}\)nên ad < bc            (1)

Xét tích a(b + d) = ab + ad             (2)

             b(a + c) = ba + bc             (3)

Từ (1);(2);(3) suy ra a(b + d) < b(a + c) => \(\frac{a}{b}< \frac{a+c}{b+d}\) (4)

Tương tự ta có \(\frac{a+c}{b+d}< \frac{c}{d}\)                                        (5)

Từ (4);(5) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)hay x < z < y

13 tháng 6 2018

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ab+ad< ab+bc\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

\(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow\left(a+c\right)d< \left(b+d\right)c\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

từ \(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

21 tháng 6 2015

Ta có

a/b<c/d \(\Leftrightarrow\)ad<bc           (1)

Thêm ab vào 2 vế của (1) ta được:

ad+ab<bc+ab hay a(b+d)<b(a+c) =>a/b<a+c/b+d            (2)

Thêm cd vào 2 vế của (2) ta được:

ad+cd<bc+cd  hay d(a+c)<c(b+d) =>c/d>a+c/b+d            (3)

Từ (2) và (3) suy ra:a/b<a+c/b+d<c/d

**** bạn

 

 

 

21 tháng 6 2015

a, \(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)

 \(\frac{a+c}{b+d}=\frac{b\left(a+c\right)}{b\left(b+d\right)}=\frac{ab+bc}{b\left(b+d\right)}\)

VCif a/b<c/d => ad<bc

=> ab + ad < ab +ad

=> a/b < (a+c) / (b+d) (1)

Cm tương tự :

(a+c) / (b+d) < c/d (2)

 Từ 1 và 2 => DPCM