Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d2 // d3 → a ≠ 0 nếu a = 0 thì d1//d2//d3 không có hình thang. Khi đó ta có :
Đường thẳng d1 cắt d2 tại D(2/a; 1), d1 cắt d3 tại C(6/a; 5)
d2 cắt Oy tại A(0; 1) và d3 cắt Oy tại B(0; 5)
Hình thang ABCD là thang vuông có đường cao là cạnh AB = 4
đáy AD = |2/a| và BC = |6/a| . Do 2/a và 6/a cùng dấu nên
AD + BC = |2/a| + |6/a| = |2/a + 6/a| =|8/a|
Diện tích thang ABCD = 1/2.(AD + BC)AB = 8 → (AD + BC).4 = 16
→ AD + BC = 4 → |8/a| = 4 → a = 2 hay a = - 2
T có hệ điều kiện:
\(\hept{\begin{cases}\left(x-1\right)\left(x+1\right)\ge0\left(1\right)\\\left(x-1\right)\left(9-x\right)\ge0\left(2\right)\\\left(x-1\right)\left(2x-12\right)\ge0\left(3\right)\end{cases}}\)
Sử dụng xét dấu trong trái ngoài cùng, ta có:
\(\left(1\right)\Leftrightarrow x\le-1\) hoặc \(x\ge1\)
\(\left(2\right)\Leftrightarrow1\le x\le9\)
\(\left(3\right)\Leftrightarrow x\le1\) hoặc \(x\ge6\)
Biểu diễn nghiệm trên trục như sau:
(1): 1 -1 ] [
(2): 1 ] [ [ 9
(3): ] 1 6 ] [
Kết hợp cả ba ta có:
-1 1 ] [ ] 9 [ 6 ]
Vậy điều kiện cuối là \(6\le x\le9\)
Cô giải chi tiết đó :)) Chúc em học tốt :)
ĐK: `{(3x+4>=0),(1+2x>=0),(x+3>=0):}<=> {(x>=-4/3),(x>=-1/2),(x>=-3):} <=> x>=-1/2`
Vd là ΔABC đều có AB=AC=BC=a, AH là đường cao thì
\(AH=\dfrac{a\sqrt{3}}{2}\)
đvdt: đơn vị diện tích
k cho mình nhé:))