Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh được MBPD và BNDQ đều là hình bình hành Þ ĐPCM.
b) Áp dụng định lý Talet đảo cho DABD và DBAC tacos MQ//BD và MN//AC.
Mà ABCD là hình thoi nên AC ^ BD Þ MQ ^ MN
MNPQ là hình chữ nhật vì có các góc ở đỉnh là góc vuông
a:
ABCD là hình thoi
=>AC vuông góc BD tại trung điểm của mỗi đường
=>AC vuông góc BD tại O và O là trung điểm chung của AC và BD
AM+MB=AB
PC+PD=DC
mà AM=PC và AB=DC
nên MB=PD
Xét tứ giác BMDP có
BM//DP
BM=DP
Do đó: BMDP là hình bình hành
b: Xét tứ giác AQCN có
AQ//CN
AQ=CN
Do đó: AQCN là hình bình hành
=>AC cắt QN tại trung điểm của mỗi đường
=>O là trung điểm của QN
=>N,O,Q thẳng hàng
c: Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD
=>MQ vuông góc AC
Xét ΔABC có
BM/BA=BN/BC
nên MN//AC
=>MQ vuông góc MN
BMDP là hình bình hành
=>BD cắt MP tại trung điểm của mỗi đường
=>O là trung điểm của MP
Xét tứ giác MNPQ có
O là trung điểm chung của MP và NQ
góc NMQ=90 độ
Do đó: MNPQ là hình chữ nhật
c) PQ ⊥ BD (gt). Xét các tam giác vuông POB và QOD có:
∠POB = ∠QOD∠ (đối đỉnh),
OB = OD
∠PBO = ∠QDO (so le trong).
Do đó ΔPOB = ΔQOD (g.c.g) ⇒ BP = DQ
Lại có BP // DQ nên tứ giác PBQD là hình bình hành
Mặt khác PBQD có hai đường chéo vuông góc nên là hình thoi.
a) Ta có:-
- M là trung điểm của AB
⇒ AM = MB.
- N là trung điểm của BC
⇒ BN = NC.
- P là trung điểm của CD
⇒ CP = PD.
- Q là trung điểm của DA
⇒ DQ = QA.
Do đó, ta có: AM = MB = BN = NC = CP = PD = DQ = QA.
⇒ tứ giác MNPQ là hình bình hành.
Có:
- I là trung điểm của AC
⇒AI = IC.
- K là trung điểm của BD
⇒ BK = KD.
Do đó, ta có: AI = IC = BK = KD.
⇒ tứ giác INKQ là hình bình hành.
b)Gọi O là giao điểm của MP và NQ ta có:
MP // AB và NQ//CD ( M và N là trung điểm của AB và CD).
⇒ MP song song với NQ.
do đó :O nằm trên MP và NQ.
Gọi H là giao điểm của MI và NK ta có:
MI // AC và NK // BD (do I và K là trung điểm của đường chéo AC và BD).
⇒ MI song song với NK.
Do đó: H nằm trên cả MI và NK.
Gọi G là giao điểm của OH và BD ta có:
OH //MP và BD // MP (do O nằm trên MP và NQ, và H nằm trên MI và NK).
⇒ OH song song với BD.
doo đó: G nằm trên OH và BD.
⇒ I, O, K thẳng hàng.(ĐPCM)
a: Xét ΔBAC có BM/BA=BN/BC=1/2
nên MN//AC và MN=1/2AC
Xét ΔDAC có DQ/DA=DP/DC
nên PQ//AC và PQ/AC=DQ/DA=1/2
=>PQ=1/2AC
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
Xét ΔCAB có CI/CA=CN/CB=1/2
nên IN//AB và IN=1/2AB
Xét ΔDAB có DQ/DA=DK/DB=1/2
nên QK//AB và QK=1/2AB
=>IN//QK và IN=QK
=>INKQ là hình bình hành
b: MNPQ là hình bình hành
=>MP cắt NQ tại trung điểm của mỗi đường
=>O là trung điểm của NQ
INKQ là hbh
=>IK cắt NQ tại trung điểm của mỗi đường
=>I,O,K thẳng hàng
a) Hai tam giác OAM và OCP có: OA = OC
ˆOAM=ˆOCP ( AB song song CD )
AM = CP
Suy ra 2 tam giác này bằng nhau => ˆMOA=ˆCOP => M, O, P thẳng hàng.
Tương tự suy ra N, O, Q thẳng hàng
b) Do BM = BN, BA = BC nên theo định lí Thales đảo suy ra MN song song AC + PQ song song AC => MN song song PQ.
Tương tự MQ song song NP. Mà ta lại có AC vuông góc với BD => MNPQ là hình chữ nhật.