K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CH
Cô Hoàng Huyền
Admin
VIP
5 tháng 10 2016
A B C D M N L H
Do MN là đường trung bình của tam giác ABD nên MN // BD. Vậy thì \(LH\perp MN.\)
Lại có LN là đường trung bình của tam gaisc ACD nên LN // CD. Do \(MH\perp CD\Rightarrow MH\perp LN.\)
Xét tam giác LNM có LH và MH là các đường cao nên H là trực tâm tam giác LMN.
28 tháng 9 2019
Gọi H là trung điểm DC.
Chứng minh HE// IF( vì cùng //BC)
=> HE vuông FK ( vì FK vuông IF)
Tương tự HF// EI( vì cùng //AD)
=> HF vuông EK( vì EK vuông IE)
Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC
giúp mình,mình cần gấp
- Xét hình thoi \(ABCD\) ta có:
Hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(O\) (gt).
\(\Rightarrow AC\perp BD\) tại \(O\).
-Ta có: \(\widehat{HAM}+\widehat{AMH}=90^0\)(\(\Delta AHM\) vuông tại \(H\)).
\(\widehat{BNH}+\widehat{OMN}=90^0\)(\(\Delta MON\) vuông tại \(O\))
Mà \(\widehat{AMH}=\widehat{OMN}\)(đôi đỉnh).
=>\(\widehat{HAM}=\widehat{BNH}\).
- Xét \(\Delta NBH\) và \(\Delta AMH\) ta có:
\(\widehat{BHN}=\widehat{AHM}=90^0\)..
\(\widehat{HAM}=\widehat{BNH}\) (cmt)
\(\Rightarrow\) \(\Delta NBH\) ∼\(\Delta AMH\) (g-g).
\(\Rightarrow\)\(\dfrac{BH}{HM}=\dfrac{HN}{AH}\)(2 tỉ lệ tương ứng).
\(\Rightarrow BH.AH=HN.HM\).
Mà \(AH=BH=\dfrac{1}{2}AB\) (\(H\) là trung điểm \(AB\)).
\(\Rightarrow\dfrac{1}{2}AB.\dfrac{1}{2}AB=HN.HM\)
\(\Rightarrow AB^2=4HM.HN\). \(\left(1\right)\)
- Xét \(\Delta ABO\) và \(\Delta AMH\) ta có:
\(\widehat{AOB}=\widehat{AHM}=90^0\)..
\(\widehat{A}\) là góc chung
\(\Rightarrow\) \(\Delta ABO\) ∼\(\Delta AMH\) (g-g).
\(\Rightarrow\)\(\dfrac{AO}{AH}=\dfrac{AB}{AM}\)(2 tỉ lệ tương ứng).
\(\Rightarrow AB.AH=AO.AM\).
Mà \(AH=\dfrac{1}{2}AB\) (\(H\) là trung điểm \(AB\)).
\(\Rightarrow AB.\dfrac{1}{2}AB=AO.AM\)
\(\Rightarrow AB^2=2HM.HN\) \(\left(2\right)\).
-Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(AB^2=4.HM.HN=2.AO.AM\)