K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

A D B C H

qua A kẻ đường thẳng // với DB và giao CB tại K

ta có : tứ giác akbd là hình bình hành (do ak//db,ad//bk)

=>ak=bd=n

ta co: ak//bd

mà bd vuông góc với ac => ak vuông goc với ac

xet tam giac vuong ack co:

\(\frac{1}{ah^2}\)=\(\frac{1}{ac^2}\)+\(\frac{1}{ak^2}\)

hay 1/h^2=1/m^2+1/n^2

28 tháng 8 2017

Kẻ OE,OF,OG,OH lần lượt là đg cao của các tam giác vuông DOC,AOB,AOD,BOC.

Vì OE=OF=OG=OH=h

và:AC=m;OA=OC-->OA=OC=m/2

tg tự với DB=n;DO=DB ta cũng có:

DO=OB=n/2

Xét tam giác vuông AOB (O= 90 độ do hình thoi có 2 đg chéo vuông góc)

và OF là đường cao có:

1/OF=1/OA^2+1/OB^2

-->1/h^2=1/\(\left(\frac{m}{2}\right)\)^2+1/(n/2)^2                        (1)

CM tương tự vs các tam giác vuông còn lại đều đc kquar như trên đánh số (1),(2),(3),(4)

Cộng (1),(2), (3),(4) ta đc:4/h^2 =16/m^2+16/n^2

Chia cả  2 vế cho 16 ta đc điều phải cm

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:
Vì $ABCD$ là hình thoi nên $AC\perp BD$ tại $O$ và $AC,BD$ cắt nhau tại trung điểm $O$ của mỗi đường

$\Rightarrow AO=\frac{AC}{2}=\frac{m}{2}; DO=\frac{BD}{2}=\frac{n}{2}$

Xét tam giác $AOD$ vuông tại $O$, áp dụng hệ thức lượng trong tam giác vuông:

$\frac{1}{d(O, AD)^2}=\frac{1}{OA^2}+\frac{1}{OD^2}$

$\Leftrightarrow \frac{1}{h^2}=\frac{1}{(\frac{m}{2})^2}+\frac{1}{(\frac{n}{2})^2}=\frac{4}{m^2}+\frac{4}{n^2}$

$\Leftrightarrow \frac{1}{4h^2}=\frac{1}{m^2}+\frac{1}{n^2}$ (đpcm)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Hình vẽ:

13 tháng 7 2020

+ Qua C kẻ đg thẳng vuông góc với AC và cắt AD tại I

Gọi H,K lần lượt là hình chiếu của O,C trên AD.

+ OD là đg trung bình của t/g ACI

=> CI = 2 OD = BD = n

+ OH là đg trung bình của t/g ACK

=> CK = 2 OH = 2h

+ t/g ACI vuông tại C, đg cao CK

Suy ra \(\frac{1}{CK^2}=\frac{1}{AC^2}+\frac{1}{CI^2}\)

\(< =>\frac{1}{\left(2h\right)^2}=\frac{1}{m^2}+\frac{1}{n^2}\)

\(< =>\frac{1}{4h^2}=\frac{1}{m^2}+\frac{1}{n^2}\)

Vậy ta có điều phải chứng minh

b: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔBAD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra NP//MQ và NP=MQ

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔADC

Suy ra: QP//AC

mà AC\(\perp\)BD

nên QP\(\perp\)BD

mà MQ//BD

nên MQ\(\perp\)QP

hay \(\widehat{MQP}=90^0\)

Xét tứ giác MQPN có 

MQ//NP

MQ=NP

Do đó: MQPN là hình bình hành

mà \(\widehat{MQP}=90^0\)

nên MQPN là hình chữ nhật

Xét tứ giác MQPN có 

\(\widehat{MQP}+\widehat{MNP}=180^0\)

Do đó: MQPN là tứ giác nội tiếp

hay M,Q,P,N cùng thuộc 1 đường tròn