Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔBCD có
\(\widehat{BAD}=\widehat{DBC}\)
\(\widehat{ABD}=\widehat{BDC}\)
Do đó: ΔADB\(\sim\)ΔBCD
b: Ta có: ΔADB\(\sim\)ΔBCD
nên DB/CD=AB/BD=AD/BC
=>5/CD=3/5=3,5/BC
=>CD=25/3(cm); BC=35/6(cm)
Xét ∆ABD và ∆BDC có:
=> ∆ABD ∽ ∆BDC(trường hợp 3)
=> BD = √(AB.DC) = √(12,5.8,5) = √356,25 => BD = 18,9 cm
a: Xét ΔABD và ΔBDC có
\(\widehat{ABD}=\widehat{BDC}\)
\(\widehat{A}=\widehat{DBC}\)
Do đó: ΔABD\(\sim\)ΔBDC
b: Ta có: ΔABD\(\sim\)ΔBDC
nên \(\dfrac{AB}{BD}=\dfrac{BD}{DC}=\dfrac{AD}{BC}\)
\(\Leftrightarrow\dfrac{5}{DC}=\dfrac{1}{2}=\dfrac{3.5}{BC}\)
=>DC=10; BC=7
c: Ta có: ΔABD\(\sim\)ΔBDC
nên \(\dfrac{S_{ABD}}{S_{BDC}}=\left(\dfrac{AB}{BD}\right)^2=\dfrac{1}{4}\)
A B C D
a. Ta thấy góc DAB = góc DBC (gt) và góc ABD = góc BDC (So le trong) nên \(\Delta DAB\sim\Delta CBD\left(g-g\right)\)
b. Ta có: \(\frac{DA}{BC}=\frac{AB}{BD}\Rightarrow\frac{3}{4}=\frac{5}{BD}\Rightarrow BD=\frac{20}{3}\)
\(\frac{AB}{BC}=\frac{BD}{DC}\Rightarrow DC=\frac{4.20}{3}:3=\frac{80}{9}\)
c. Ta thấy \(\frac{S_{ABD}}{S_{BDC}}=\left(\frac{3}{4}\right)^2=\frac{9}{16}\Rightarrow\frac{S_{ABD}}{S_{ABCD}}=\frac{9}{25}\Rightarrow S_{ABCD}=\frac{125}{9}\left(cm^2\right)\)
Chúc em học tốt :)
a, Xét ΔABD và ΔBDC có :
\(\widehat{A}=\widehat{DBC}\left(gt\right)\)
\(\widehat{ABD}=\widehat{BDC}\left(AB//CD;slt\right)\)
\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\)
b, Ta có : \(\Delta ABD\sim\Delta BDC\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{BD}=\dfrac{BD}{DC}\)
hay \(BD^2=AB.DC=12.28,5=342\)
\(\Rightarrow BD=\sqrt{342}\left(cm\right)\)