Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABKH có
AB//HK
AB=HK
Do đó: ABKH là hình bình hành
mà \(\widehat{AHK}=90^0\)
nên ABKH là hình chữ nhật
a: Xét tứ giác ABKH có
AB//HK
AH//BK
Do đó: ABKH là hình bình hành
mà \(\widehat{AHK}=90^0\)
nên ABKH là hình chữ nhật
a: Xét tứ giác ABKH có
AB//KH
AH//BK
góc AHK=90 độ
=>ABKH là hình chữ nhật
b: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc C
=>ΔAHD=ΔBKC
=>DH=CK
c: AH vuông góc DE
H là trung điểm của DE
=>AH là trung trực của DE
=>D đối xứng E qua AH
d: AH là trung trực của DE
=>AD=AE
=>góc ADE=góc AED
=>góc AED=góc BCD
=>AE//BC
Xét tứ giác ABCE có
AB//CE
AE//BC
=>ABCE là hình bình hành
b)Xét tam giác ADH và tam giác BCK có:
AH=BK,AD=BC,góc AHD=góc BKC=90^0
=>Tam giác ADH=tam giác BCK
=>DH=CK(đpcm)
c)Do E là điểm đối xứng của D qua H nên:
góc AED=góc ADH=góc BCK
=>AE//BC
Kết hợp AB//EC
=>ABCE là hình bình hành
a: Xét tứ giác ABCH có
AB//CH
góc AHC=90 độ
Do đó: ABCH là hình thang vuông
b: Sửa đề; DH=CK
Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc C
Do đo: ΔAHD=ΔBKC
=>DH=CK
c: Xét ΔAED có
AH vừa là đường cao, vừa là trung tuyến
nên ΔAED cân tại A
=>góc AED=góc ADE=góc BCD
=>AE//BC
mà AB//CE
nên ABCE là hình bình hành