K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

gọi AE giao với DC=i

dễ dàng chứng minh \(ME=NF=\frac{1}{2}AB\)

dựa vào đình lí Ta lét ta có 

\(\frac{ME}{DI}=\frac{AE}{AI}=\frac{EF}{IC}\)

để ME=EF<=> DI=CI <=> I là trung điểm của DC

dễ dàng chứng minh E là trung điểm của BD

=>HI//BC=> AI//BC=> ABCI là hình binhf hành <=> AB=IC  <=> AB=CD/2

a) Ta có: MN là đường trung bình của hình thang ABCD(AB//CD)

nên MN//AB//CD và \(MN=\dfrac{AB+CD}{2}\)(Định lí 4 về đường trung bình của hình thang)

hay EN//AB và MF//AB

Xét ΔCAB có 

N là trung điểm của BC(gt)

NE//AB(cmt)

Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔCAB có 

E là trung điểm của AC(cmt)

N là trung điểm của BC(gt)

Do đó: EN là đường trung bình của ΔCAB(Định nghĩa đường trung bình của tam giác)

nên \(EN=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔDAB có 

M là trung điểm của AD(gt)

MF//AB(cmt)

Do đó: F là trung điểm của BD(Định lí 1 về đường trung bình của tam giác)

Xét ΔDAB có 

M là trung điểm của AD(gt)

F là trung điểm của BD(cmt)

Do đó: MF là đường trung bình của ΔDAB(Định nghĩa đường trung bình của tam giác)

nên \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra MF=EN

\(\Leftrightarrow MF+FE=EN+FE\)

\(\Leftrightarrow ME=FN\)(đpcm)

b) Ta có: \(EN=MF=\dfrac{AB}{2}\)(cmt)

nên \(EN=MF=\dfrac{6}{2}=3\left(cm\right)\)

Ta có: \(MN=\dfrac{AB+CD}{2}\)(cmt)

nên \(MN=\dfrac{6+8}{2}=\dfrac{14}{2}=7\left(cm\right)\)

Ta có: MF+FE+EN=MN

\(\Leftrightarrow EF=MN-MF-EN=7-3-3=1\left(cm\right)\)

Vậy: EF=1cm

20 tháng 4 2020

có m là trđ của cd rồi lại còn ef cắt bc tại m

a, xét tam giác DEM có AB // DM (gt) => ME/AE = DM/AB (ddl)

xét tam giác MFC có  MC // AB (gt) => MF/FB = CM/AB (đl)

có DM = CM do M là trung điểm của CD (gt)

=> ME/AE = MF/FB  xét tam giác ABM 

=> EF // AB (đl)

b, gọi EF cắt AD;BC lần lượt tại P và Q

xét tam giác ABD có PE // AB => PE/AB = DE/DB (đl)

xét tam giác DEM có DM // AB => DE/DB = ME/MA (đl)

xét tam giác ABM có EF // AB => EF/AB = ME/MA (đl)

=> PE/AB = EF/AB

=> PE = EF

tương tự cm được FQ = EF

=> PE = EF = FQ

c, Xét tam giác DAB có PE // AB  => PE/AB = DP/DA (đl)

xét tam giác ADM có PE // DM => PE/DM = AP/AD (đl) 

=> PE/AB + PE/DM = DP/AD + AP/AD

=> PE(1/AB + 1/DM) = 1                                  (1)

xét tam giác AMB có EF // AB => EF/AB = MF/MB (đl)

xét tam giác BDM có EF // DM => EF/DM = BF/BM (đl)

=> EF/AB + EF/DM = MF/MB + BF/BM

=> EF(1/AB + 1/DM) = 1                            (2)

xét tam giác ABC có FQ // AB => FQ/AB = CQ/BC (đl)

xét tam giác BMC có FQ // MC => FQ/MC = BQ/BC (đl)

=> FQ/AB + FQ/MC = CQ/BC + BQ/BC 

có MC = DM (câu a)

=> FQ(1/AB + 1/DM) = 1                            (3)

(1)(2)(3) => (1/AB + 1/DM)(PE + EF + FQ) = 3

=> PQ(1/AB + 1/DM) = 3

DM = 1/2 CD = 6

đến đây thay vào là ok

19 tháng 6 2015

a)  XÉT HÌNH THANG AEDF(AE//DF) O LÀ TRUNG ĐIỂM EF, OM//DF=> M PHẢI LÀ TĐ CỦA AD

TƯƠNG TỰ C/M N LÀ TĐ BC

ĐẾN ĐÂY LÀM GIỐNG BÀI HÔM TRC ĐÓ E. KẺ 2 ĐƯỜNG CHÉO AC,DB

TAM GIÁC ADB: E,M LÀ TRUNG ĐIỂM 2 CẠNH BÊN => EM LÀ ĐTB => EM//DB. TƯƠNG TỰ VỚI TAM GIÁC DBC:... => FN//DB

=> EM//FN.

TƯƠNG TỰ C/M: EN//MF => TỨ GIÁC EMFN LÀ HÌNH BÌNH HÀNH

B) EMFN LÀ HÌNH THOI <=> EM=EN. MÀ EM=1/2 DB; EN=1/2 AC => AC=DB => HÌNH THANG ABCD CÂN

C) EMFN LÀ HÌNH VUÔNG <=> EMFN LÀ HÌNH THOI (ĐK CÂU B) VÀ EM VUÔNG GÓC EN TẠI E. MÀ EM//DB, EN//AC => DB VUÔNG GÓC AC

=> ABCD là hình thang cân và có 2 đường chéo vuông góc

19 tháng 6 2015

lần sau kẻ hình nha