Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo nha.
Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)
\(\Rightarrow OE=OF=\frac{k}{k+1}\Rightarrow EF=\frac{2k}{k+1}\)
Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)
\(\frac{2}{EF}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)
Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)
Trước tiên kẻ AM cắt CD tại I
Ta xét tam giác AMB và IMD
Hai tam giác đó bằng nhau vì MB=MD (gt) và góc AMB=IMD (đđ) và góc ABM=IDM (so le trong vì AB//CD)
Vì vậy mà AB=ID và MA=MI
Xét tam giác AIC có MA=MI và NA=NC nên MN là đường trung bình của tam giác AIC nên MN//CI và MN=(1/2)CI
Do CI=CD-ID cũng như CI=CD-AB (do AB=ID cmt) và MN=(1/2)CI
nên MN=(1/2)(CD-AB)
A B C D N M E
a, kẻ AM cắt CD tại E
xét tam giác AMB và tam giác EMD có : góc AMB = góc EMD (đối đỉnh)
DM = MB do M là trung điểm của BD (gt)
góc ABM = góc MDE (so le trong AB // DC)
=> tam giác AMB = tam giác EMD (g-c-g) (1)
=> AM = ME (đn) có M nằm giữa A và E
=> M là trung điểm của AE
N là trugn điểm của AC (gt) ; xét tam giác AEC
=> MN là đường trung bình của tam giác AEC (đn) (2)
=> MN // EC (Đl)
CE // AB
=> MN // AB
b, (2) => MN = EC/2
EC = CD - DE
=> MN = (CD - DE) : 2
(1) => DE = AB
=> MN = (CD - AB) : 2
Mk vẽ hình trước bạn nhé ! Còn giải thì mk đang làm>>
o B A C D N F E M
a. Ta có: ^ABD = ^CDB ( so le trong ) => ^NBO = ^MDO
Xét \(\Delta\)NBO và \(\Delta\)MBO
có: ^NBO = ^MDO ( chứng minh trên )
OD = OB ( tính chất đường chéo hình bình hành)
^DOM = ^BON ( đối đỉnh )
=> \(\Delta\)NBO và \(\Delta\)MBO (1)
=> ON = OM
mà O nằm giữa M và N
=> M đối xứng vs N qua O
b. (1) => BN = DM và AB = DC => \(\frac{DM}{DC}=\frac{BN}{AB}\)(2)
Có: NF // AC => \(\frac{NF}{AC}=\frac{BN}{AB}\)(3)
ME//AC => \(\frac{ME}{AC}=\frac{DM}{DC}\)(4)
(2 ); (3) ; (4) => \(\frac{ME}{AC}=\frac{NF}{AC}\)
=> ME = NF mặt khác ME //NF ( //AC )
=> NFME là hình bình hành.
a) Ta có: MN là đường trung bình của hình thang ABCD(AB//CD)
nên MN//AB//CD và \(MN=\dfrac{AB+CD}{2}\)(Định lí 4 về đường trung bình của hình thang)
hay EN//AB và MF//AB
Xét ΔCAB có
N là trung điểm của BC(gt)
NE//AB(cmt)
Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Xét ΔCAB có
E là trung điểm của AC(cmt)
N là trung điểm của BC(gt)
Do đó: EN là đường trung bình của ΔCAB(Định nghĩa đường trung bình của tam giác)
nên \(EN=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔDAB có
M là trung điểm của AD(gt)
MF//AB(cmt)
Do đó: F là trung điểm của BD(Định lí 1 về đường trung bình của tam giác)
Xét ΔDAB có
M là trung điểm của AD(gt)
F là trung điểm của BD(cmt)
Do đó: MF là đường trung bình của ΔDAB(Định nghĩa đường trung bình của tam giác)
nên \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra MF=EN
\(\Leftrightarrow MF+FE=EN+FE\)
\(\Leftrightarrow ME=FN\)(đpcm)
b) Ta có: \(EN=MF=\dfrac{AB}{2}\)(cmt)
nên \(EN=MF=\dfrac{6}{2}=3\left(cm\right)\)
Ta có: \(MN=\dfrac{AB+CD}{2}\)(cmt)
nên \(MN=\dfrac{6+8}{2}=\dfrac{14}{2}=7\left(cm\right)\)
Ta có: MF+FE+EN=MN
\(\Leftrightarrow EF=MN-MF-EN=7-3-3=1\left(cm\right)\)
Vậy: EF=1cm